Сетевой солнечный инвертор

Москва 2022

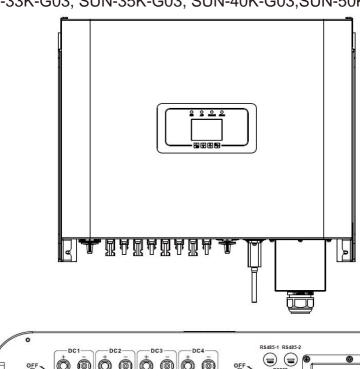
Оглавление

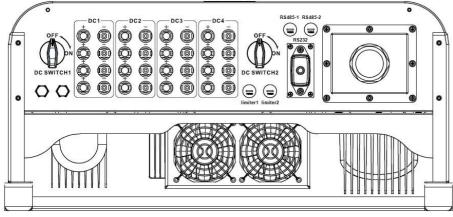
Инс	рормация о руководстве	4
Как	пользоваться этим руководством	4
1.	Введение	4
1.1	Внешний вид	4
1.2	Комплектация	5
2.	Предупреждения и инструкции по технике безопасности	6
2.1	Знаки безопасности	6
2.2	Инструкции по технике безопасности	6
2.3	Примечания по использованию	7
3.	Рабочий интерфейс	8
3.1	Вид интерфейса	8
3.2	Индикатор состояния	8
3.3	Кнопки	9
3.4	ЖК – Дисплей	9
4.	Установка продукта	9
4.1	Выбор места установки	9
4.2	Крепление инвертора	12
4.3	Установка инвертора	12
5.	Электрическое подключение	13
5.1	Подключение входных клемм постоянного тока	. 13
5.2	Подключение входных клемм переменного тока	15

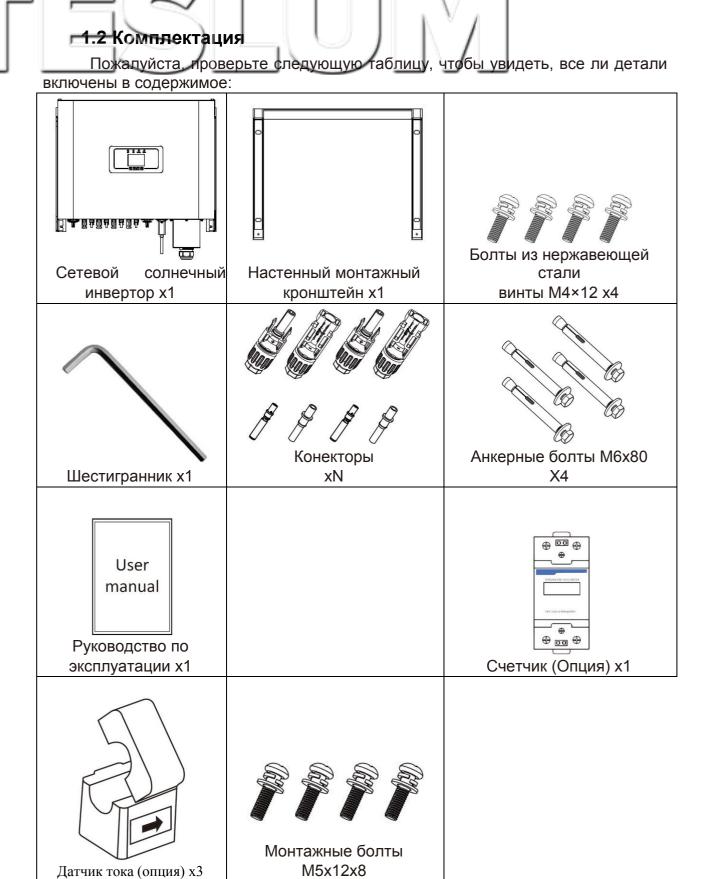
\sim	
— 5.2.1 Рекомендуемые технические характеристики устройства	
защиты от тока	17
5.3 Подключение заземления	
5.4 Защита от перегрузки по току	18
5.5 Подключение мониторинга инвертора	18
5.6 Установка регистратора данных (datalogger)	
6. Запуск и завершение работы	
6.1 Запуск инвертора	20
6.2 Отключение инвертора	20
7. Функция нулевого экспорта через счетчик энергии	20
7.1 Многорядное и параллельное подключение счетчиков	25
7.2 Как просмотреть мощность нагрузки вашей фотоэлектрическ	юй
электростанции на платформе мониторинга?	
8. Основное управление	32
8.1 Начальный интерфейс	35
Главное меню	
8.2 Статистика (Staistics)	38
8.3 Запись неисправности (Fault Record)	
8.4 Настройка ВКЛ/ВЫКЛ (ON/OFF)	
8.5 Установка параметров	
8.5.1 Системные параметры	
8.5.1.1 Time Set (Установка времени)	
8.5.1.2 Language Set (Выбор языка)	
8.5.1.3 Display Set (Настройка Дисплея)	
8.5.1.4 Factory data reset (Сброс Данных)	
8.5.1.5 Setting Restor (Настройка восстановления)	
8.5.2 Running Param (Запуск параметров)	
8.5.2.1 Меню Over-frequency Response (Реакция на превышен частоты)	
8.5.3 Параметры Защиты	
8.5.4 Настройки коммуникационного порта (Comm. Param. Set) .	
9. Ремонт и обслуживание	
10. Информация об ошибках и обработка	
11 Технические характеристики	71

информация о руководстве

Руководство в основном описывает информацию о продукте, рекомендации по установке, эксплуатации и техническому обслуживанию. Руководство не включает в себя полную информацию о (PV) системе.


Как пользоваться этим руководством


Прочтите руководство и другие сопутствующие документы перед выполнением каких -либо операций с инвертором. Документы должны храниться бережно и всегда быть доступными. Содержание может периодически обновляться или пересматриваться в связи с разработкой продукта. Информация в данном руководстве может быть изменена без предварительного уведомления. Последнюю версию руководства можно получить через service@deye.com.cn


1. Введение

1.1 Внешний вид

Однофазный инвертор питания может преобразовывать мощность постоянного тока солнечной панели в мощность переменного тока, которая может напрямую подаваться в сеть. Его внешний вид показан ниже. Модели инвертора: 30K-G03,SUN-33K-G03, SUN-35K-G03, SUN-40K-G03,SUN-50K-G03,SUN-60K-G03.

2. Предупреждения и инструкции по технике безопасности

Неправильное использование может привести к поражению электрическим током или ожогам. В данном руководстве содержатся важные инструкции, которым необходимо следовать при установке и обслуживании. Пожалуйста, внимательно

пронитайте эти инструкции перед использованием и сохраните их для дальнейшего использования.

2.1 Знаки безопасности

Знаки безопасности, используемые в данном руководстве, которые подчеркивают потенциальные риски и важную информацию по безопасности, перечислены ниже:

Внимание:

Предупреждающий знак указывает на важные инструкции по технике безопасности, несоблюдение которых может привести к серьезной травме или смерти.

Опасность поражения электрическим током:

Осторожно, знак риска поражения электрическим током указывает на важные инструкции по технике безопасности, несоблюдение которых может привести к поражению электрическим

током.

Совет по безопасности:

Знак примечания указывает на важные инструкции по технике безопасности, несоблюдение которых может привести к повреждению или разрушению инвертора.

Опасность высокой температуры:

Осторожно, символ горячей поверхности указывает на указания по технике безопасности, несоблюдение которых может привести к ожогам.

Внимание:

Электрическая установка инвертора должна соответствовать правилам техники безопасности страны или региона.

Внимание:

Инвертор имеет неизолированную топологию, поэтому перед эксплуатацией инвертора необходимо убедиться, что вход постоянного тока и выход переменного тока электрически изолированы. Категорически запрещается заземлять положительный и отрицательный полюсы фотоэлектрической цепочки. В противном случае это повредит инвертор.

Опасность поражения электрическим током:

Запрещается разбирать корпус инвертора, существует опасность поражения электрическим током, что может привести к серьезной травме или смерти. Для ремонта обратитесь к квалифицированному специалисту.

-2.2 Инструкции по технике безопасности

ть поражения электрическим

фотоэлектрический модуль подвергается солнечного света, на выходе будет генерироваться напряжение постоянного тока. Запретить прикосновение, чтобы избежать опасности поражения электрическим током. Опасность поражения электрическим током:

При отключении входа и выхода инвертора для технического обслуживания подождите не менее 5 минут, пока инвертор не разрядит оставшееся электричество.

инвертора.

Опасность высокой температуры:

Локальная температура инвертора может превышать 80°C во работы. Пожалуйста, не прикасайтесь к корпусу

2.3 Примечания по использованию

Трехфазный силовой инвертор разработан и испытан в соответствии с соответствующими правилами техники безопасности. Это может обеспечить личную безопасность пользователя. Но как электрическое устройство, оно может привести к поражению электрическим током или травме из-за неправильной эксплуатации. Пожалуйста, используйте устройство в соответствии со следующими требованиями:

- 1. Инвертор обслуживаться должен устанавливаться И квалифицированным специалистом в соответствии с местными стандартами.
- Сначала необходимо отключить сторону переменного тока, а затем отключить сторону постоянного тока во время установки и обслуживания, после чего подождите не менее 5 минут, чтобы избежать удара током.
- Температура инвертора может превышать 80 °С во время работы. Не прикасайтесь, чтобы не получить травму.
- Все электромонтажные работы должны соответствовать местным электрическим стандартам, и после получения разрешения местного отдела электроснабжения специалисты могут подключить инвертор к сети.
 - 5. Пожалуйста, примите соответствующие антистатические меры.
 - 6. Пожалуйста, установите инвертор там, где дети не могут достать его.

3.2 Индикатор состояния

Панель инвертора имеет 4 индикатора, левый — индикатор выхода постоянного тока, зеленая индикация показывает наличие постоянного напряжения на входе инвертора. Рядом находится индикатор переменного тока, зеленый цвет указывает на наличие переменного тока. Рядом с индикатором переменного тока находится индикатор работы, зеленый цвет указывает на нормальный выходной сигнал. Правый индикатор — сигнал тревоги. красный указывает на неисправность.

Индикатор	Статус	Описание		
•DC	Вкл	Инвертор обнаружил вход постоянн <mark>ого тока</mark>		
• DC	Откл	Низкое входное напряжение постоянного тока		
•AC	Вкл	Подключено к сети		
AC	Откл	Сеть недоступна		
• NODMAI	Вкл	В работе		
NORMAL	Откл	Отключен		
ALADM	Вкл	Обнаруж <mark>енны</mark> е не <mark>испр</mark> авности или отчет об ошибках		
ALARM	Откл	При нормальной эксплуатации		

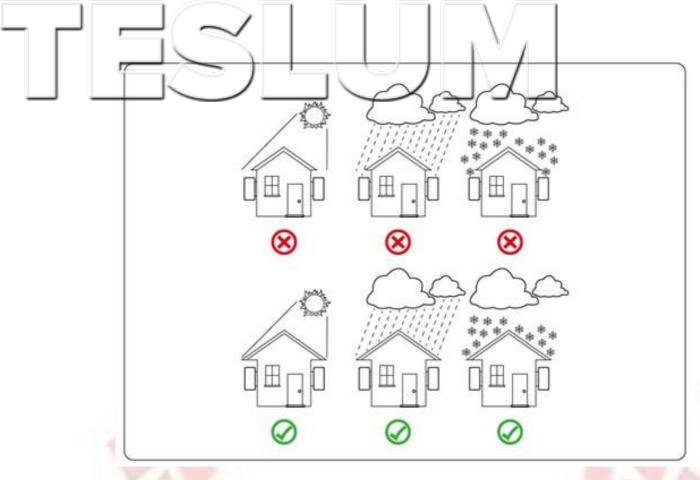
3.3 Кнопки

На панели инвертора есть четыре кнопки: Вверх — кнопка «UP», вниз — кнопка «Down», слева — кнопка выхода «ESC», справа — кнопка ввода «Enter». с При помощи этих кнопок доступны следующие функции:

- Пролистывание отображаемых опций (клавиши «UP» и «Down»);
- Доступ для изменения настраиваемых параметров (клавиши Esc и Enter).

3.4 ЖК – ДисплейТрехфазный инвертор использует дисплей форматом 256*128 точек отображает следующую информацию:

- Статус работы инвертора и его показания;
- Служебные сообщения для оператора;
- Аварийные сообщения и индикация неисправностей.

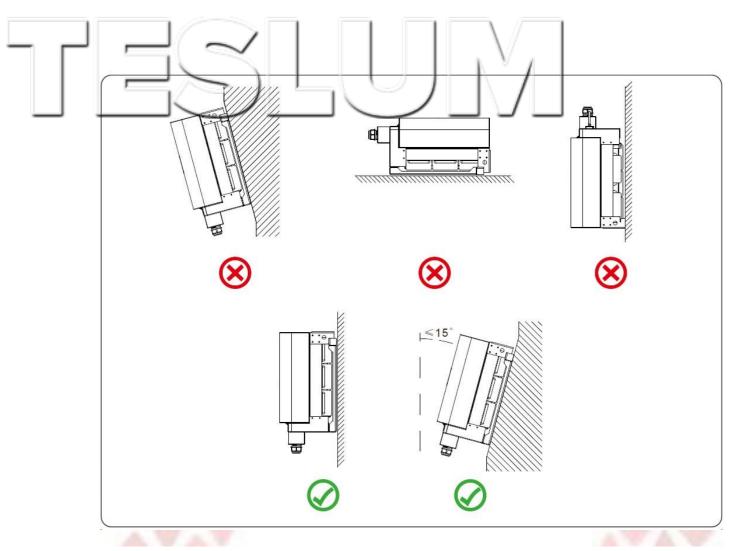

4. Установка продукта

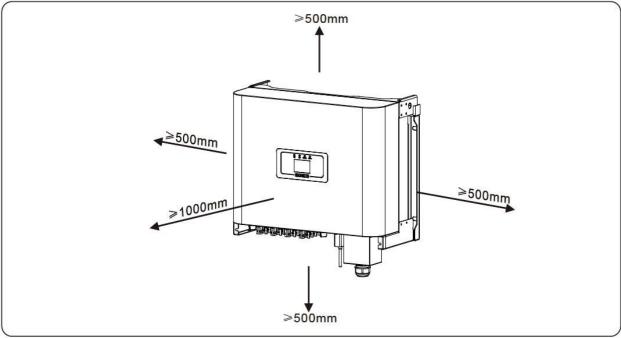
4.1 Выбор места установки

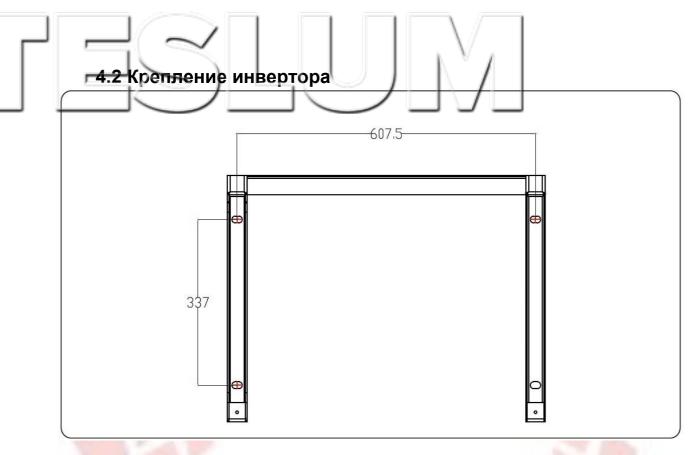
При выборе места для инвертора необходимо учитывать следующие критерии:

ВНИМАНИЕ: Опасность возгорания

- Не устанавливайте инвертор в местах, содержащих легковоспламеняющиеся материалы или газы.
 - Не устанавливайте инвертор в потенциально взрывоопасных зонах.
- Не устанавливайте в небольших закрытых помещениях, где воздух не может свободно циркулировать. Во избежание перегрева всегда следите за тем, чтобы поток воздуха вокруг инвертора не блокировался.
- Воздействие прямых солнечных лучей повысит рабочую температуру инвертора и может привести к ограничению выходной мощности. Рекомендуется устанавливать инвертор внутри помещения, чтобы избежать попадания прямых солнечных лучей или дождя.
- Во избежание перегрева при выборе места установки инвертора необходимо учитывать температуру окружающей среды. Рекомендуется использовать солнцезащитный козырек, сводящий к минимуму прямые солнечные лучи, когда температура окружающего воздуха вокруг устройства превышает 100°F/40°C.
 - Установите на стену или прочную конструкцию, способную выдержать вес.
- Должна быть вентилируемая среда, если инвертор установлен в герметичном помещении.

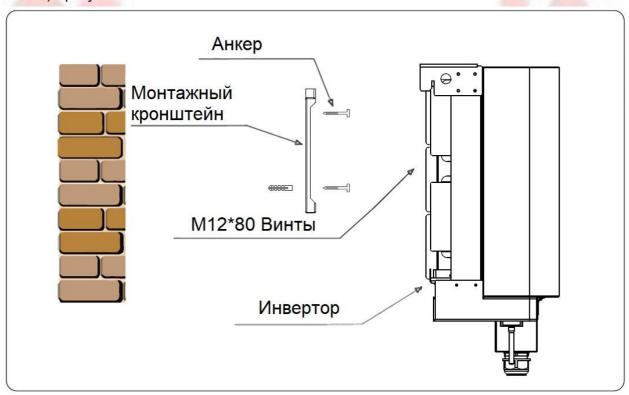



- Устанавливайте вертикально с максимальным наклоном +/ 15°. Если установленный инвертор наклонен под углом, превышающим указанный максимальный, рассеивание тепла может быть затруднено, что может привести к снижению выходной мощности по сравнению с ожидаемой.
- При установке более одного инвертора необходимо оставить расстояние не менее 500 мм между каждым инвертором. И каждый инвертор должен быть как минимум на 500 мм выше и ниже. И необходимо установить инвертор в месте, где дети не могут его достать.
- При установке обратите внимание на среду установки, что бы четко видеть ЖК-дисплей инвертора и состояние индикатора.
- Должна быть вентилируемая среда, если инвертор установлен в герметичном помещении.



Совет по безопасности:

Не раз<mark>ме</mark>щайте и <mark>не хран</mark>ите какие-либо предметы рядом с инвертором.



4.3 Установка инвертора

Инвертор разработан в соответствии с монтажным типом установки, пожалуйста, используйте настенный монтаж (кирпичная стена расширительного болта) при установке.

Процедура установки показана ниже:

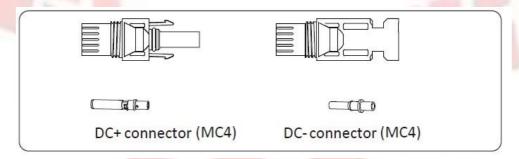
1. Найдите подходящую стену, в соответствии с отверстием для крепления на монтажном кронштейне, сделайте отметку на стене. На кирпичной стене установка должна подходить, используя дюбеля.

2. Убедитесь, что положение монтажных отверстий на стене соответствует монтажной пластине, а монтажная стойка расположена горизонтально. Сделайте отверстия при помощи дрели или перфоратора.

- 1. Выключите главный выключатель сети (АС).
- 2. Выключите автомат или разъединитель постоянного тока.
- 3. Подсоедините входной разъем PV к инвертору.

Совет по безопасности:

Пожалуйста, не подключайте положительный или отрицательный полюс солнечной батареи к земле, это может привести к серьезным повреждениям инвертора.


Совет по безопасности:

Перед подключением убедитесь, что полярность выходного напряжения фотоэлектрической батареи соответствует символам «DC+» и «DC-».

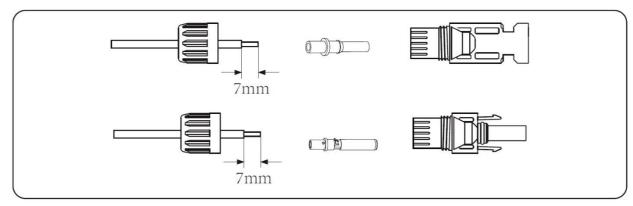
Совет по безопасности:

Перед подключением инвертора убедитесь, что напряжение холостого хода фотоэлектрической батареи находится в пределах 1000 В инвертора.

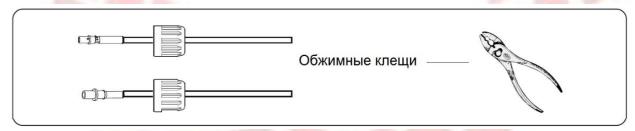
3. При помощи винтов зафиксируйте кронштейн.

5. Электрическое подключение

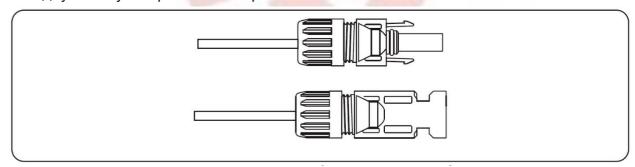
Совет по безопасности:


кабеля

Пожалуйста, используйте подходящее сечение постоянного тока для фотоэлектрической системы.



Шаги по сборке разъемов постоянного тока перечислены ниже:


а) Зачистите кабель примерно на 7 мм от края, снимите колпачковую гайку разъема.

b) Обожмите металлические клеммы с помощью обжимных клещей, как показано ниже

с) Вставьте контактный штифт в верхнюю часть разъема и закрутите накидную гайку к верхней части разъема.

5.1 Подключение входных клемм постоянного тока

Внимание:

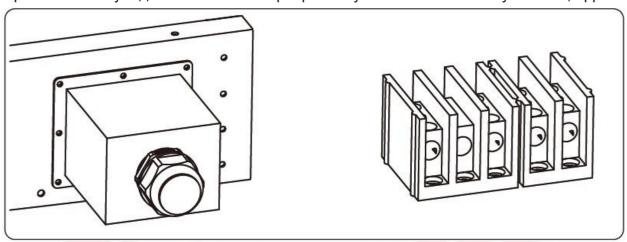
Солнечные лучи, попадающие на панель, соединённые последовательно, создают высокое напряжение, которое может представлять опасность для жизни. Поэтому перед подключением входной линии постоянного тока солнечная панель должна быть накрыта непрозрачным материалом, а переключатель постоянного тока должен быть в положении «ВЫКЛ», в противном случае высокое напряжение инвертора может привести к опасным для жизни условиям.

Внимание:

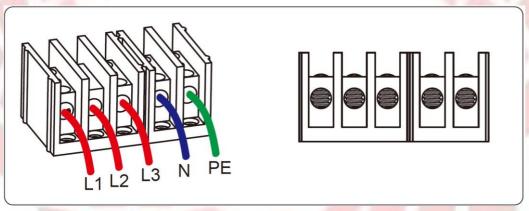
Не соединяйте между собой разъемы разных производителей.

5.2 Подключение входных клемм переменного тока

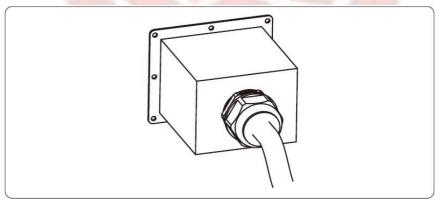
Не включайте сразу разъединитель постоянного тока после подключения клемм постоянного тока. Подключите клеммы переменного тока к стороне переменного тока инвертора, сторона переменного тока оснащена однофазными клеммами переменного тока, которые можно удобно подключить. Для легкой установки рекомендуются гибкие провода. Технические характеристики приведены в таблице ниже.


Внимание:

Фаза L1 подключается к контакту съемного коннектора 1; L2 подключается к контакту съемного коннектора 2; L3 подключается к контакту коннектора 3, линия РЕ подключается к земле, провод N подключается к контакту N.


Технические харак	Медный кабель	
Площадь поперечного сечения проводника (мм)	Рекомендуемый диапазон	25 – 50

Способ установки провода переменного тока:


1) Открутите 8 крепежных винтов на распределительной коробке переменного тока инвертора, как локазано на рисунке ниже. После снятия распределительной коробки можно увидеть клеммы инвертора. По умолчанию используется 5 цифр.

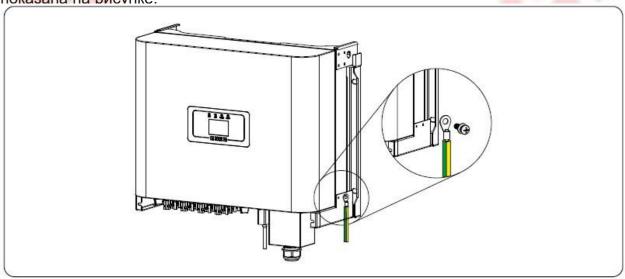
2) Подключите кабель через распределительную коробку, водонепроницаемую оболочку и вставьте в клемму (на рисунке показан способ подключения трехфазных линий, подключенных к распределительной коробке, провод заземления прикручен к корпусу инвертора), и используйте шестигранную отвертку, чтобы прижать жгут проводов к соединительной клемме, как показано на рисунке ниже.

3) Привинтите крышку разъема переменного тока обратно к корпусу, а затем затяните все винты и разъем водонепроницаемой защиты, как показано на рисунке ниже.

5.2.1 Рекомендуемые технические характеристики устройства

защиты от тока

Инвертор	Номинальное напряжение	Номинальная выходная мощность (кВт)	Устройство защиты по току (A)
SUN-30K-G03	400	30	60
SUN-33K-G03	400	33	70
SUN-35K-G03	400	35	80
SUN-40K-G03	400	40	80
SUN-50K-G03	400	50	100
SUN-60K-G03	400	60	120

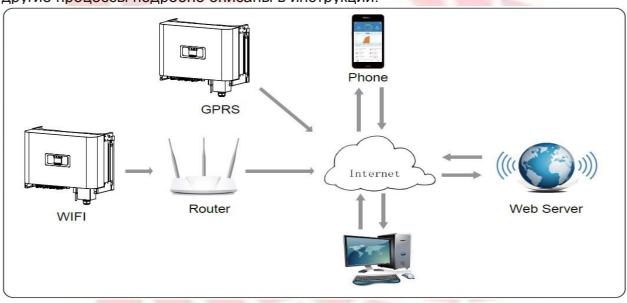


Внимание:

Инвертор имеет встроенную схему обнаружения тока утечки. Если подключено внешнее устройство защиты от тока утечки, его рабочий ток должен быть больше 300 мА или выше, иначе инвертор может работать неправильно.

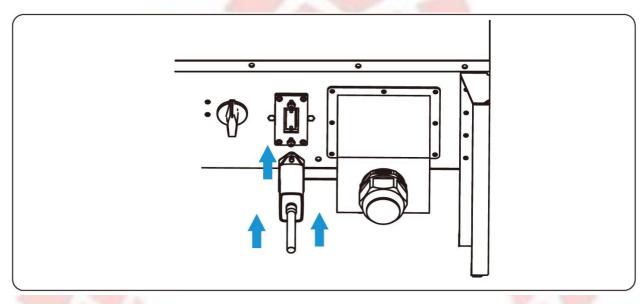
5.3 Подключение заземления

Хорошее заземление хорошо защищает от перенапряжения и улучшает характеристики электромагнитных помех. Поэтому перед подключением кабелей переменного и постоянного тока и кабелей связи необходимо сначала заземлить кабель. Для одиночной системы просто заземлите кабель РЕ. Для систем с несколькими машинами все кабели РЕ инвертора должны быть подключены к одному и тому же заземляющему медному контуру, чтобы обеспечить эквипотенциальное соединение. Установка заземляющего провода оболочки показана на рисунке:


5.4 Защита от перегрузки по току

Для защиты инвертора рекомендуется установить автоматический выключатель для предотвращения перегрузки по току.

Модель	Номинальное выходное напряжение (В)	Номинальный выходной ток (A)	Устройство токовой защиты (A)
SUN-15K-G03	220/230	22.7/21.7	30


5.5 Подключение мониторинта инвертора

Инвертор имеет функцию беспроводного дистанционного мониторинга. Инвертор с функцией Wi-Fi оснащен разъемом Wi-Fi для подключения инвертора к сети. Работа Wi-Fi Plug, установка, доступ в Интернет, загрузка приложений и другие процессы подробно описаны в инструкции.

5.6 Установка регистратора данных (datalogger)

Когда инвертор уже установлен, место регистратора данных закрыто заглушкой, как показано на рисунке ниже. При установке регистратора данных снимите заглушку, замените ее уплотнительной пластиной с квадратным отверстием и затяните винты. Вставьте регистратор данных в интерфейс и закрепите его винтом. Конфигурацию регистратора данных необходимо выполнять после завершения различных электрических подключений и включения питания инвертора. Когда инвертор подключен к источнику питания постоянного тока, проверить работу регистратора можно путем индикации светодиода на корпусе.

6. Запуск и завершение работы

Перед запуском инвертора убедитесь, что инвертор соответствует следующим условиям, в противном случае это может привести к возгоранию или повреждению инвертора. В этом случае мы не несем никакой ответственности. Для оптимизации конфигурации системы рекомендуется, чтобы два входа были подключены к одному и тому же количеству фотоэлектрических модулей.

- а) Максимальное открытое постоянное напряжение каждого набора фотоэлектрических модулей не должно превышать 1000 В ни при каких условиях.
- b) Для каждого входа инвертора лучше использовать один и тот же тип фотоэлектрического модуля последовательно.
 - с) Суммарная выходная мощность ФЭ не должна превышать максимальную входную мощность инвертора, каждый фотоэлектрический модуль не должен превышать номинальную мощность каждого канала.

6.1 Запуск инвертора

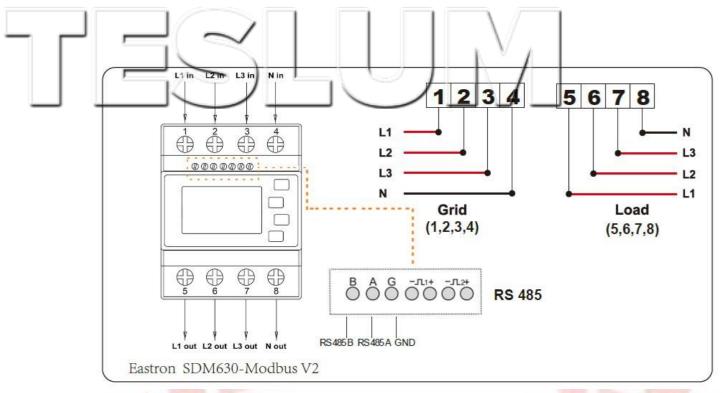
При запуске однофазного инвертора необходимо выполнить следующие шаги:

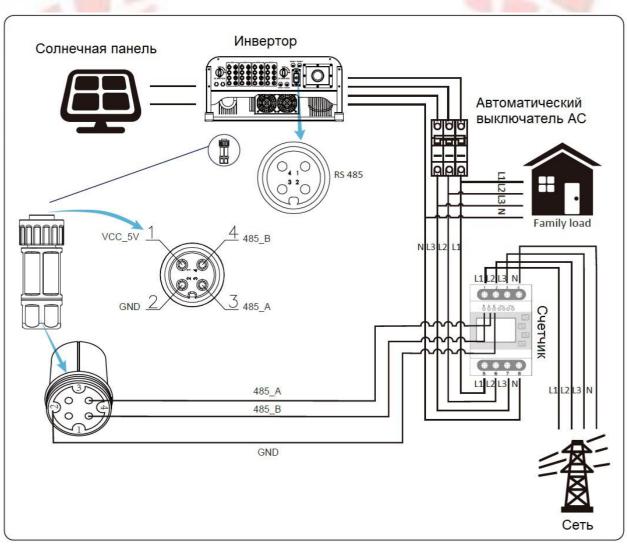
- 1. Сначала включите разъединитель переменного тока.
- 2. Включите разъединитель постоянного тока фотоэлектрического модуля, и, если панель обеспечивает достаточное начальное напряжение и мощность, инвертор запустится.
- 3. Когда напряжение переменного тока и напряжение постоянного тока в норме, запуск готов к началу. Инвертор сначала проверит внутренние параметры и параметры сети, а жидкий кристалл покажет, что инвертор выполняет самопроверку.
- 4. Если параметры находятся в допустимом диапазоне, инвертор будет генерировать энергию. Индикатор NORMAL должен гореть.

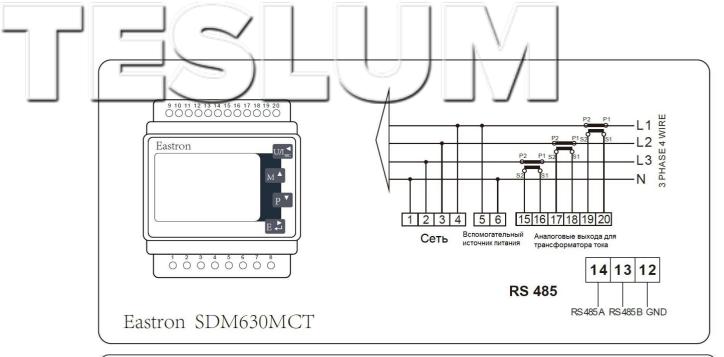
6.2 Отключение инвертора

При отключении инвертора необходимо выполнить следующие шаги:

- 1. Отключите разъединитель переменного тока.
- 2. Подождите 30 секунд, выключите разъединитель постоянного тока (если есть) или просто отсоедините входной разъем постоянного тока. Инвертор отключит ЖК-дисплей и все индикаторы в течение двух минут.


7. Функция нулевого экспорта через счетчик энергии


Есть два вида счетчиков энергии для инвертора этой серии. Первый тип — Eastron SDM630-Modbus V2, способный измерять макс. 100A ток напрямую. Для Eastron SDM630 MCT 40 мА требуется внешний трансформатор тока для измерения тока. Диапазон трансформатора тока составляет от 5A до 2000A. Также поддерживается измеритель CHNT DTSU666, он может измерять макс. 80A тока напрямую.


Если вы выполнили подключение в соответствии с требованиями главы 5 и инвертор уже работает, тогда для использования функции нулевого экспорта, сначала отключите переменное и постоянное напряжение. Отключите инвертор и подождите 5 минут, пока инвертор полностью не разрядится. Пожалуйста, следуйте рисунку ниже, чтобы подключить счетчик энергии.

На схеме подключения системы красная линия относится к линии L (L1, L2, L3), черная линия относится к нейтральной линии (N). Подключите кабель RS485 к порту счетчику энергии и к порту RS485 инвертора. Рекомендуется установить выключатель переменного тока между инвертором и электросетью, характеристики выключателя переменного тока определяются мощностью нагрузки. Если внутри приобретенного вами инвертора нет встроенного переключателя постоянного тока, мы рекомендуем вам подключить переключатель постоянного тока. Напряжение и ток переключателя зависят от массива солнечных батарей.

Схема подключения системы счетчика Eastron

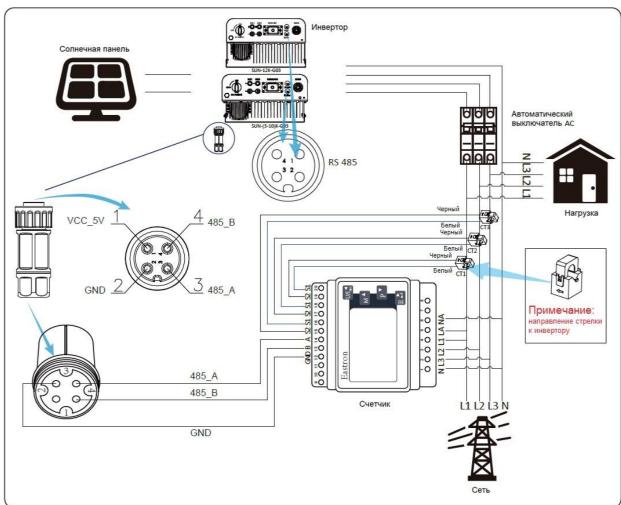
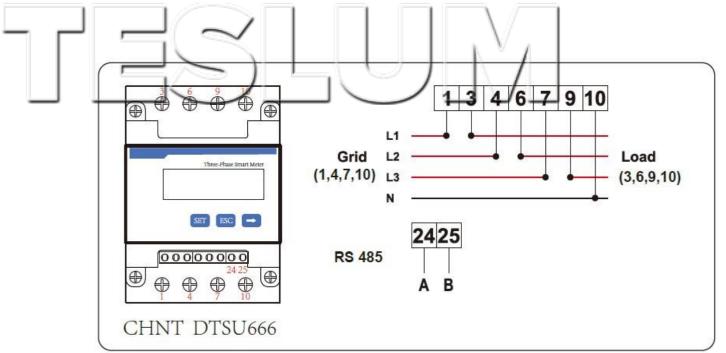
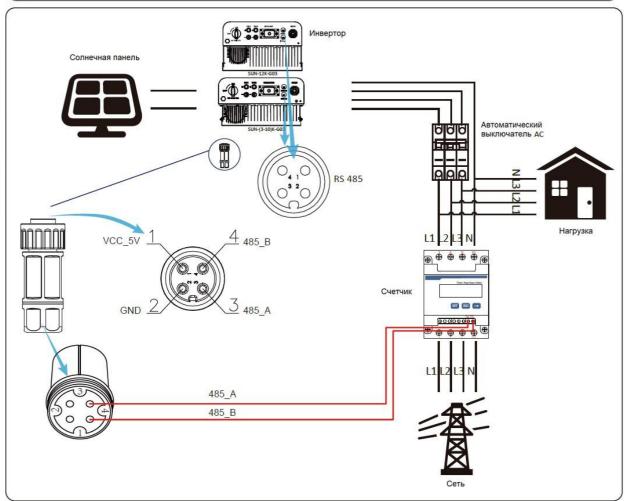




Схема подключения системы для счетчика СНЛТ

Внимание:

Убедитесь, что входные кабели сети подключаются к порту 1/4/7/10 счетчика энергии, а выходные кабели инвертора переменного тока подключаются к порту 3/6/9/10 счетчика энергии.

1. Нажмите кнопку «Enter» на LCD-панели в главном меню интерфейса, чтобы войти в меню опций, выберите [parameter setting], чтобы войти в подменю настройки, а затем выберите [run program], в этом случае введите значение по

умолчанию. Введите пароль 1234, нажав кнолку [вверх вниз, Enter], войдите в меню интерфейса настройки параметров работы, как показано на рисунке ниже.

MENU»	Setup»	Run Param	
ActiveP	31%	SelfCheck	20S
QMode	QU	Island	OFF
ReactP	0.0%	Meter	ON
PF	1.000	Limiter	OFF
Fun_ISO	ON	Feed_In	0%
Fun_RCI	ON	MPPT Nur	n 6
O	K	Cancel	

- 2. С помощью кнопок [вверх вниз], переместите курсор на счетчик энергии (Meter) и нажмите кнопку [Enter]. В этот момент вы можете включить счетчик энергии, выбрав кнопку [вверх вниз]. Пожалуйста, нажмите кнопку [Enter] для подтверждения, когда настройка будет завершена.
- 3. Переместите курсор на [OK], нажмите [Enter], чтобы сохранить настройки и выйти со страницы текущих параметров, в противном случае настройки недействительны.
- 4. Если настройка выполнена успешно, вы можете вернуться к интерфейсу меню, нажав кнопку [вверх вниз]. Если он отображает [мощность измерителя XXW], настройка функции нулевого экспорта завершена. Как показано на рисунке ниже.

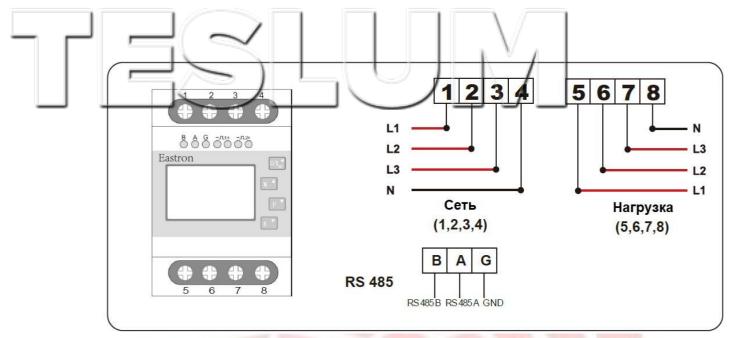
PARAMETR		Meter
		SN:1
Meter Power:	428W	
Load Power:	1.043kW	
Day	Total	
ImpEp: 9.51kWh	2.24MWh	
ExpEp : 0.00kWh	574.75KWh	
LoadEp: 13.71kWh	1.67MWh	

- 5. Измеритель мощности показывает положительное значение 428 Вт, означающее, что сеть питает нагрузку, а мощность в сеть не подается. если мощность счетчика показывает отрицательное значение, это означает, что фотоэлектрическая энергия продается в сеть или проблема с подключением проводки счетчика энергии.
- 6. После правильного подключения дождитесь запуска инвертора. Если мощность фотоэлектрического массива соответствует текущему потреблению мощности, инвертор будет поддерживать определенную мощность, чтобы противодействовать мощности сети без обратного потока.

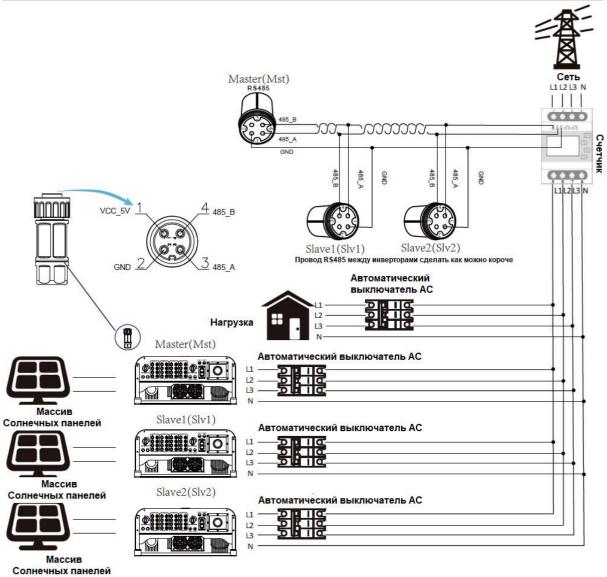
7.1 Многорядное и параллельное подключение счетчиков

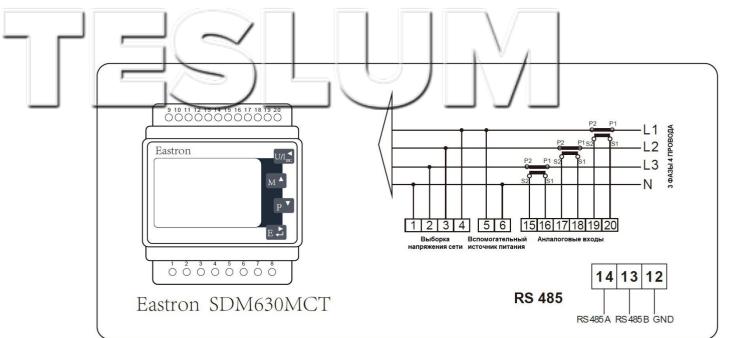
Это функция заключается в том, что, когда несколько инверторов работают параллельно, имеется только одна электросеть и одна нагрузка, тогда один счетчик может быть подключен для всех инверторов в целях предотвращения обратного тока.

Если на объекте есть несколько инверторов, работающих параллельно, также можно использовать 1 счетчик для реализации функции нулевого экспорта. Например, если в системе есть 3 инвертора, работающих параллельно с 1 счетчиком. Нам нужно настроить 1 инвертор как ведущий [master], а другие настроить как ведомые [slave]. И все они должны быть подключены к счетчику через RS485. Ниже представлена системная схема и конфигурация системы.

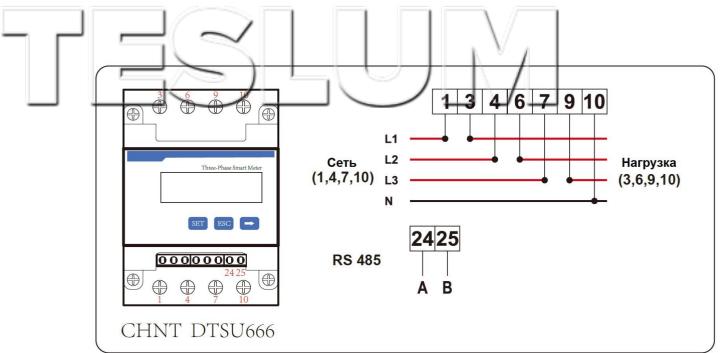

Exp_Mod	e AVG	Generate	or ON
CT_Ratio	1	G.CT	1
MFR	AUTO	G.MFR	AUTO
FeedIn	0.0KW	G.Pout	0%
Shunt	OFF	G.Cap	200.0 KW
ShuntQTY	4		
Bae	ck		

Наименование	Описание	Диапазон
Exp_Mode	AVG: Средняя мощность трех фаз равна нулю. МIN: Фаза с минимальной мощностью нагрузки экспортируется в сеть, в то время как две другие фазы могут находиться в режиме работы от сети.	AVG/MIN


CT_Ratio	Отношение ТТ счетчика на стороне электросети при применении внешнего ТТ.	1 – 1000
MFR	Счетчик со стороны электросети. Адрес Modbus должен быть установлен как 01.	AUTO/CHNT/ EASTRON
Feedin	Процент подачи электроэнергии, экспортируемой в сеть.	0-110%
Shunt	Параллельный режим. Установите один инвертор в качестве главного [Master], другие — в качестве ведомых [Slave]. Нужно установить мастер, ведомый будет следовать настройкам в мастере.	OFF/Master/ Slave
ShuntQTY	Количество инверторов параллельно	1 – 16
Generator	Счетчик Дизель генератора Enable/Disable	ON/OFF
G.CT	Отношение ТТ к мощности Дизель генератора при использовании	1 – 1000
G.MFR	Производитель счетчика Дизель Генератора. Адрес Modbus должен быть установлен как 02.	AUTO/CHNT/ EASTRON
G.Pout	Процент выходной мощности Дизель Генератора.	0 – 100%
G.Cap	Мощность Дизель Генератора.	1 – 999 кВт


Примечание: Выберите опцию Meter в Run Param и нажмите, и удерживайте

кнопку ENTER, чтобы войти в нее.



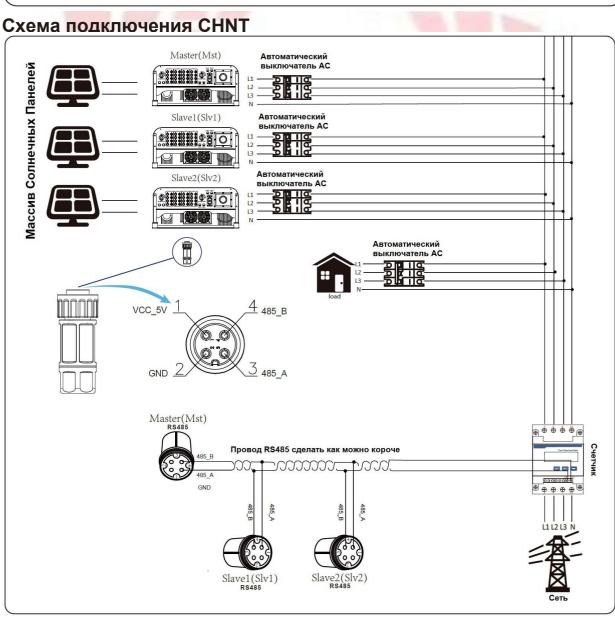
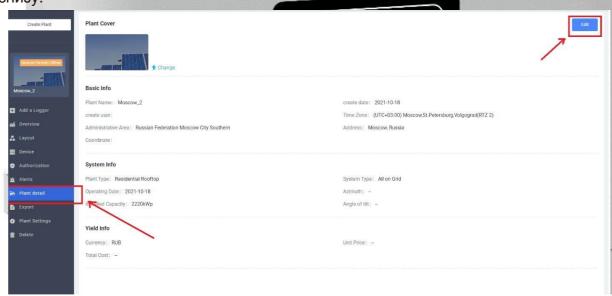

Схема соединения Eastron

Схема подключения (трехфазная система) Master(Mst) Автоматический выключатель AC Автоматический выключатель АС Массив Солнечных Панелей Автоматический выключатель АС 3 18 Автоматический выключатель АС <u>4</u> _{485_B} VCC_5V 3 _{485_}A $GND \stackrel{?}{=}$ Master(Mst) pool. Провод RS485 сделать как можно короче

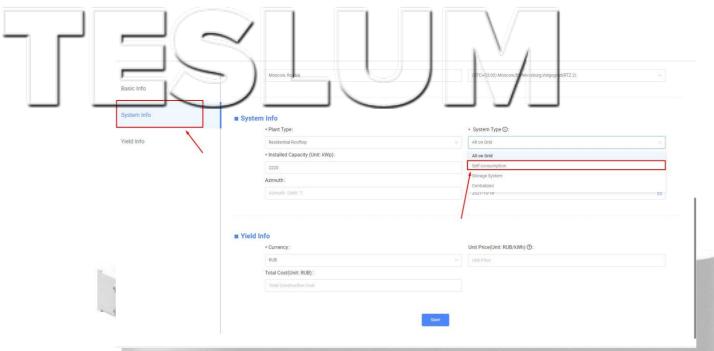
7.2 Как просмотреть мощность нагрузки вашей фотоэлектрической электростанции на платформе мониторинга?

Если вы хотите просмотреть мощность нагрузки системы и сколько энергии (кВтч) она экспортирует в сеть (выходная мощность инвертора сначала используется для питания нагрузки, а затем избыточная энергия подается в сеть). Также


подключения инвертор отобразит мощность нагрузки на ЖК -дисплее. Но, пожалуйста, не устанавливайте «Meter ON». Кроме того, вы сможете просматривать мощность нагрузки на платформе мониторинга. Метод настройки установки описан ниже.

Во-первых, перейдите на платформу Solarman:

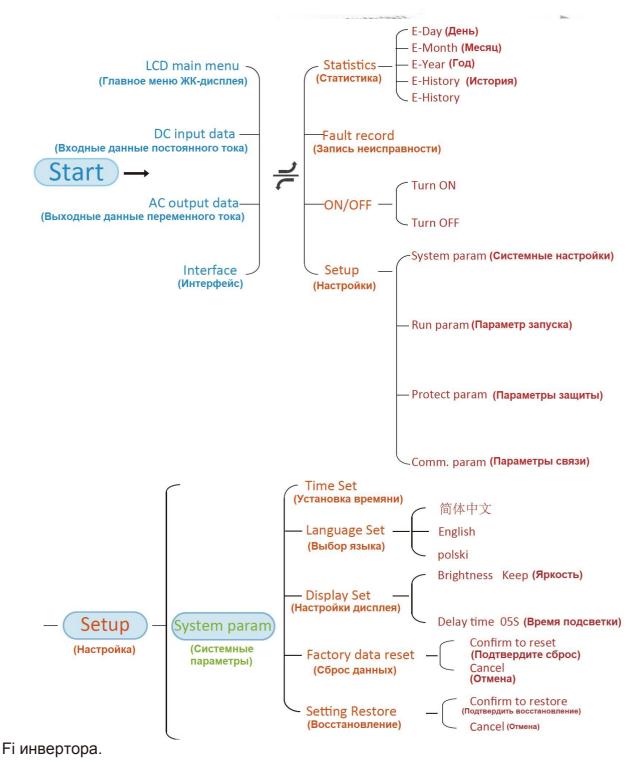
<u>https://pro.solarmanpv.com</u> эта ссылка предназначена для учетной записи дистрибьютора Solarman;

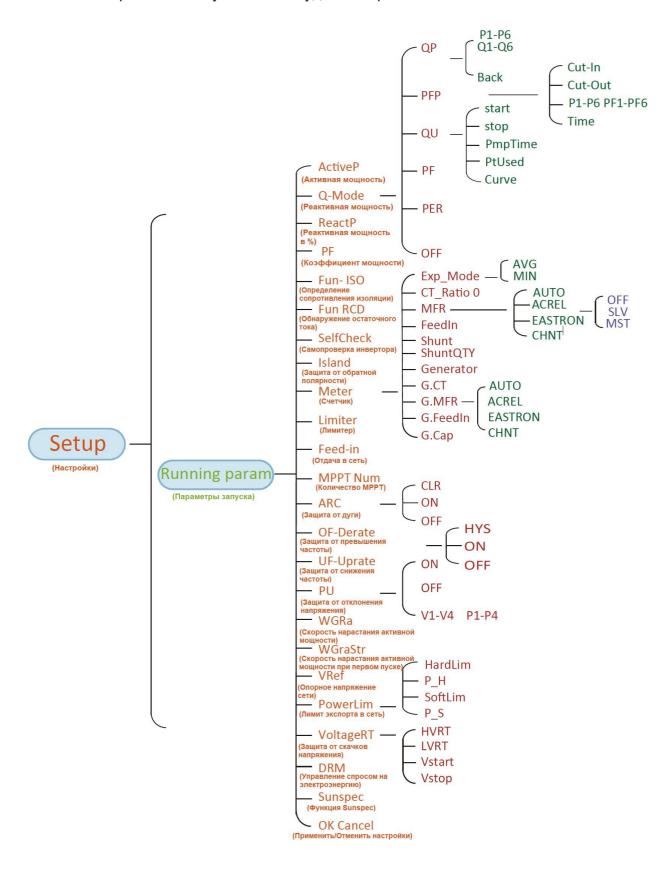

или https://home.solarmanpv.com эта ссылка предназначена для учетной записи конечного пользователя Solarman;)

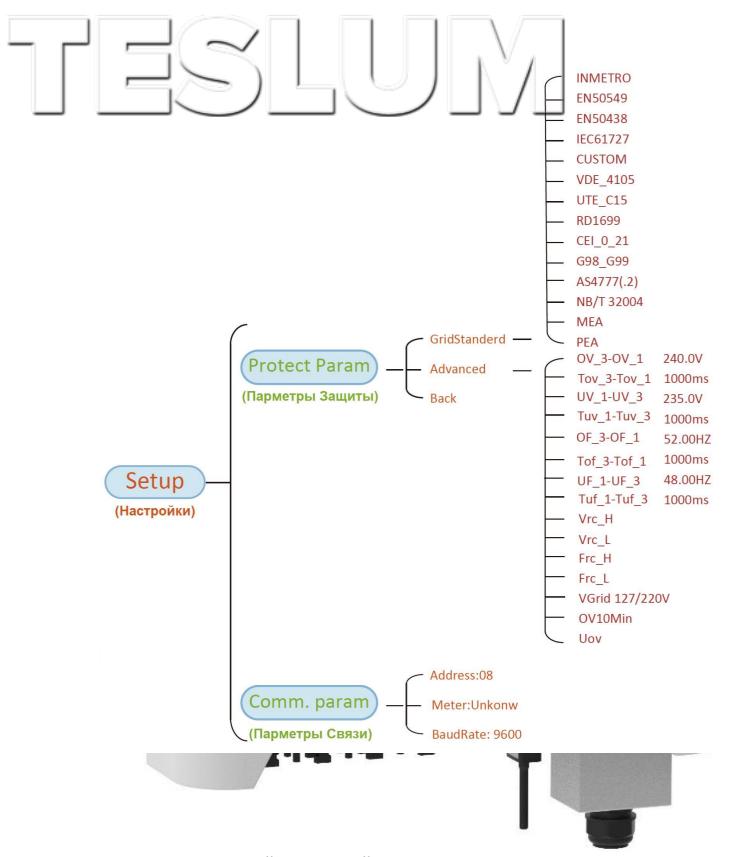
Во вкладке «Plant detail» нажмите кнопку « Edit» как показано на рисунке снизу.

Перейдите во вкладку «System Info», затем выб рите тип вашей системы как «Self-consumption» (Самостоятельное потребление)

необходимо подключить счетчик. После успешного завершения

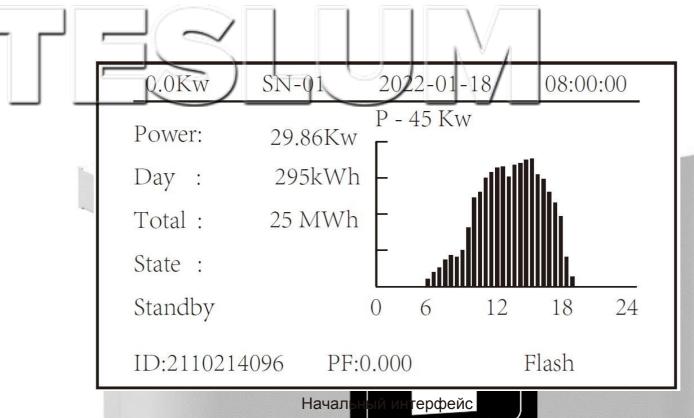

Во-вторых, перейдите на страницу мониторинга, если там показана фотоэлектрическая мощность, мощность нагрузки и мощность сети, это означает, что конфигурация правильная.





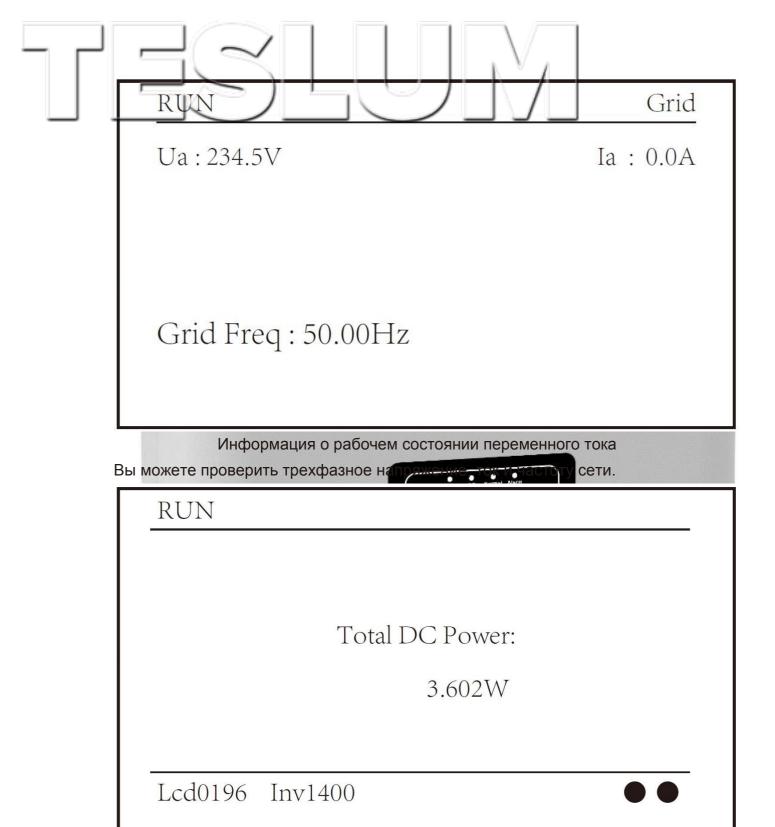
8. Основное управление

Во время нормальной работы на ЖК-дисплее отображается текущее состояние инвертора, включая текущую мощность, общую выработку, гистограмму работы мощности, идентификатор инвертора и т. д. Нажмите клавишу «Вверх» и «Вниз», чтобы увидеть текущее напряжение постоянного тока, значение постоянного тока, напряжение, переменный ток, температура радиатора инвертора, номер версии программного обеспечения и состояние подключения Wi-



8.1 Начальный интерфейс

В начальном интерфейсе вы можете проверить фотоэлектрическую мощность, фотоэлектрическое напряжение, напряжение сети, идентификатор инвертора, модель и другую информацию.



Используя клавиши ВВЕРХ или ВНИЗ, вы межете проверить напряжение постоянного тока инвертора, постоянный ток, напряжение переменного тока, и температуру инвертора.

			Input
V: 349.9V	I: 10.3A	P: 3.6KW	
V: 313.0V	I: 8.3A	P: 2.6KW	
			V: 349.9V I: 10.3A P: 3.6KW V: 313.0V I: 8.3A P: 2.6KW

Информация о входе PV и постоянном токе.

Вы можете проверить информацию о PV, количестве входных стрингов, напряжение MPPT и ток MPPT.

Версия прошивки инвертора

Вы можете проверить программное обеспечение на LCD дисплее инвертора, Ver0196 и программное обеспечение Control Ver1400. В правом нижнем углу два черных круга. Первый круг означает, что инвертор обменивается данными с ЖКдисплеем. Второй круг означает, что ЖК-дисплей обменивается данными с разъемом Wi-Fi.

PARAMETR

Meter

SN: 0

Meter Power: 0W

Load Power: 0W

Day Total

ImpEp : 0.00kWh 0.00kWh

ExpEp : 0.00kWh 0.00kWh

LoadEp: 0.00kWh 0.00kWh

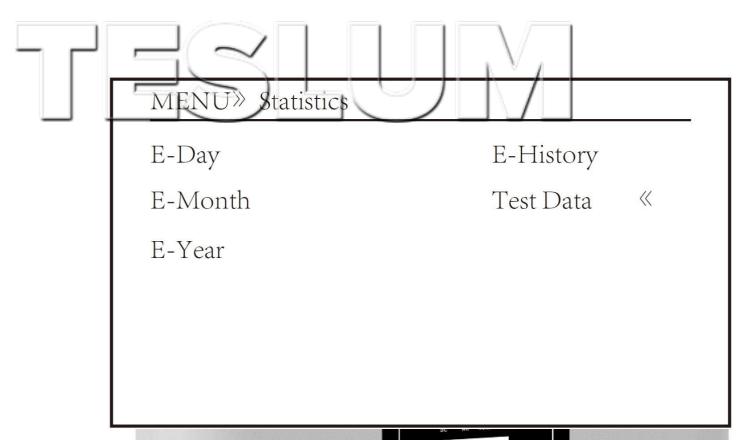
Мощность счетчика и мощность нагрузки

8.1.1 Главное меню

MENU

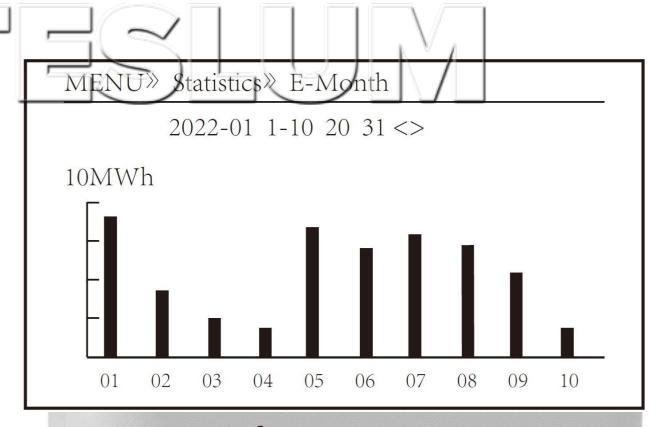
Statistics

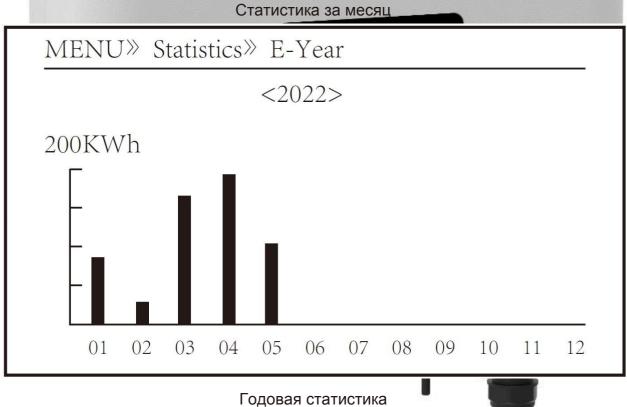
Fault Record

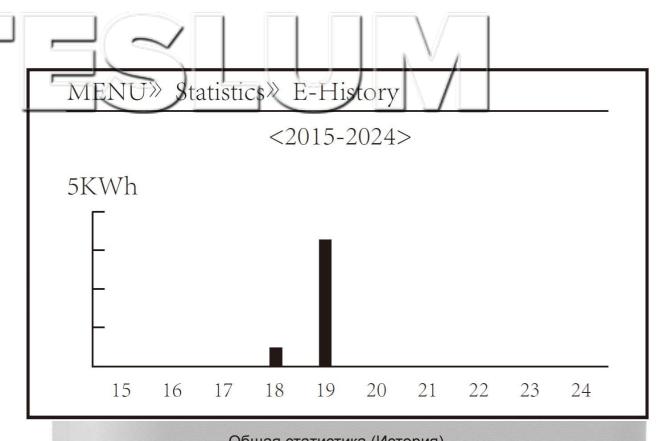

ON/OFF

Setup

В главном меню есть четыре подменю.


8.2 Статистика (Staistics)


В статистике есть пять подменю.



Дневная статистика

		Общая статисті				
Эта инфор	омация предн	назначен	DC AC Normal Pichel	икам.		
PV1 :	19186	1k3 :	11126	ofC	•	2057
PV2 :	19198	1k4 :	11140	137	:	2145
HV :	24362	1k5 :	16666	138	:	2248
GFD:	9119	1k6 :	2927	139	:	1497
DiL :	36	vHV:	24362	140	:	0
AVL:	-2	BSn :	12218	141	•	0
126 :	287	ofA :	2065	142	•	0
1k2 :	6	ofB :	2653	143	:	0
146 :	0	148 :	0	144	•	0
147 :	0	149 :	0	145	:	0

Тестовые данные

8.3 Запись неисправности (Fault Record)

В меню можно сохранить только четыре записи об ошибках, включая время, клиент может справиться с этим в зависимости от кода ошибки.

Fault: F352022-01-05 08:38

History: 1 F352022-01-05 08:37

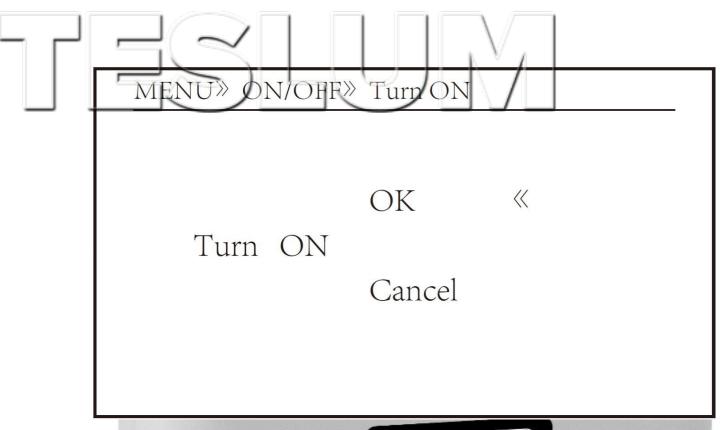
2 F352022-01-04 18:47

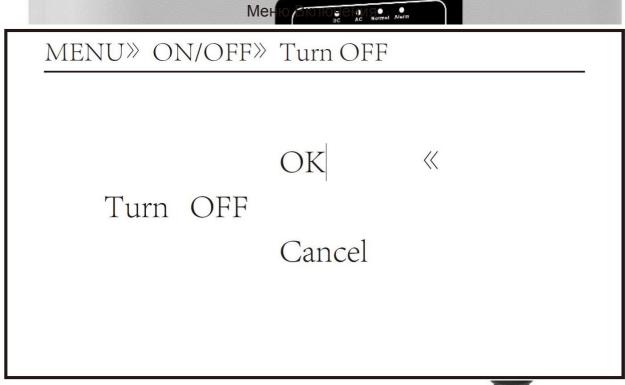
3 F352022-01-04 17:54

4 F352022-01-04 17:53

Запись

8.4 Настройка ВКЛ/ВЫКЛ

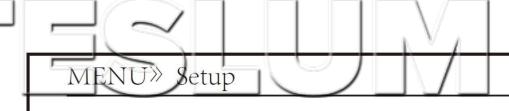

MENU» ON/OFF


Turn ON

Turn OFF «

Настройка ВКЛ/ВЫКЛ

Меню настройки ON/OFF



Меню Отключения

8.5 Установка параметров

Настройка включает системный параметр, параметр запуска, параметр защиты, параметр связи. Вся эта информация для справки по техническому обслуживанию.

System Param «

Run Param

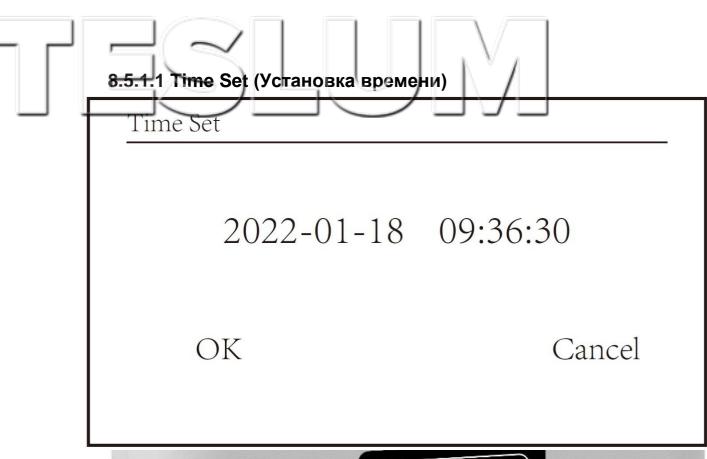
Protect Param

Comm. Param

8.5.1 Системные параметр

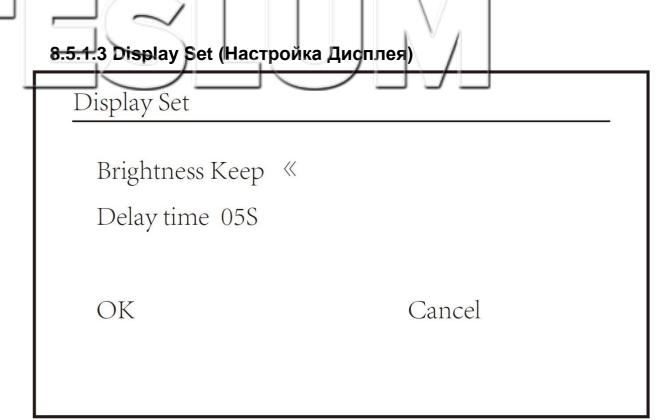
MENU» Setup » System Param

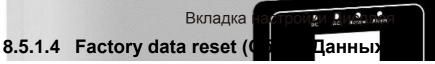
Time Set

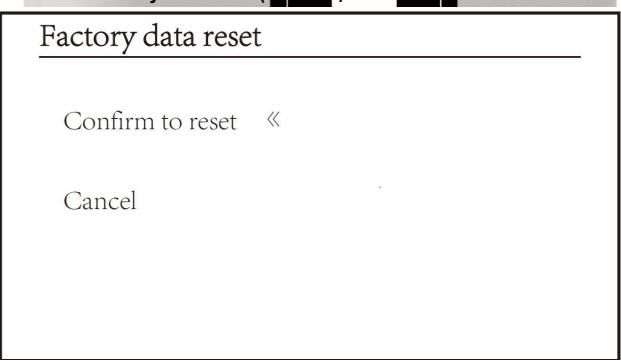

Language Set

Display Set

Factory data reset


Setting Restore


Вкладка настройки системных параметров



Вкладка выбора языка

Вкладка настройки сброса данных

8.5.1.5 Setting Restor (Настройка восстановления) Setting Restor Confirm to restore << Cancel Вкладка наст Внимание: Требуется пароль -- то. о инженера. Несанкционированный каннулированию гарантии. Первоначальный пароль 1234. 8.5.2 Running Param (Запуск параметров)

PassWord

* * *

Вкладка ввода пароля

MENU» Setup» Run Param

ActiveP 31% SelfCheck 20S Island QMode OFF OFF ReactP 0.0% Meter ON Limiter OFF PF 1.000 Fun_ISO OFF Feed_In 0% Fun_RCD OFF MPPT Num OK Cancel

Наименование	Описание	Диапазон
ActiveP	Регулировка выходной активной мощности в %	0-110%
Q-Mode	Несколько режимов управления реактивной мощностью	OFF/Q(P)/PF(P) /Q(U)/PF/Q(%)
ReactP	Регулировка выходной реактивной мощности в %	0-100%
PF	Power Fator	-0.8~+0.8
Fun_ISO	Определение сопротивления изоляции	ON/OFF
Fun_RCD	Обнаружение остаточного тока	ON/OFF
Self-check	Время самопроверки инвертора. Значение по умолчанию 60 с.	0-1000s
Island	Anti-islanding защита	ON/OFF
Meter	Если вы хотите использовать режим нулевого экспорта, установите для счетчика значение ON и выберите OFF для просмотра только данных.	ON/OFF
Feed_IN %	Он используется для определения того, сколько энергии может быть подано в сеть, когда инвертор работает в режиме нулевого экспорта. (Например, Feed_in = 50% от модели 60 кВт, а мощность нагрузки составляет 29 кВт. Это означает, что максимальная мощность 30 кВт может отдана в сеть после инвертора, обеспечивающего 29 кВт нагрузки в первую очередь	0-100%

Внимание:

Только инженерам. Мы установим параметр в зависимости от требований безопасности, поэтому клиентам не нужно его сбрасывать. Пароль 1234

MENU» Setup» Run Param OFF ARC Vref 0.0V**OFDerate** OFF **PowerLimit UFU**prate OFF VoltageRT PU OFF DRM OFF WGra 0.0%Sunspec OFF WGraStr 0.0% OK Cancel

Наименование	Описание	Диапазон
ARC	Функция обнаружения дугового замыкания	ON/OFF/CLR
OF-Derate	Реакция активной мощности на превышение частоты	ON/OFF/HYS
UF-Uprate	Реакция активной мощности на снижение частоты	ON/OFF
PU	Реакция мощности на отклонение напряжения сети	ON/OFF
Vref	Опорное напряжение сети для функций, включая Q(U), OF(P), P(U) и т. д.	80 – 260B
LVRT	Функция скачка напряжения	ON/OFF
HVRT	Функция скачка напряжения	ON/OFF
PowerLim	Hard/soft контроль ограничения экспорта	ON/OFF
DRM	Управление спросом на электроэнергию (Demand Response Modes)	ON/OFF
Sunspec	Функция Sunspec	ON/OFF
WGraStr	Процен <mark>т номи</mark> нальной мощности в секунду	0.1%~10%
WGra	WGra Процент номинально <mark>й мощно</mark> сти в секунду	

8.5.2.1 Меню Over-frequency Response (Реакция на превышение частоты)

Инвертор этой серии обеспечивает функцию «реакция на превышение частоты».

Длительное нажатие «OFD Derate» для входа в меню настроек «overfrequency response».

MENU» Setup» Run Param

ARC OFF Vref 220.0V

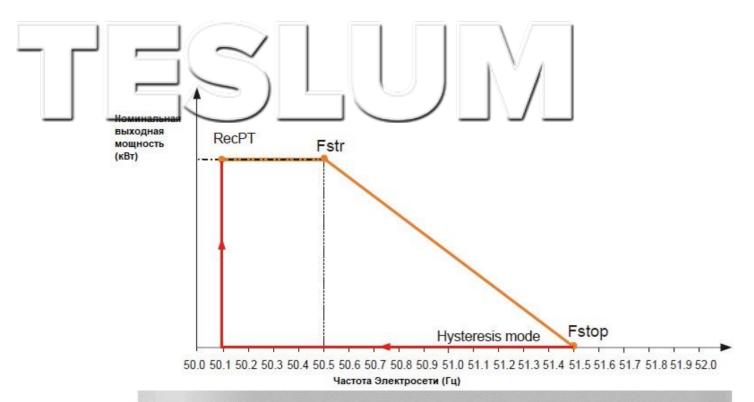
OFDerate ON PowerLimit

UFUprate OFF VoltageRT

PU OFF DRM OFF

WGra 20.0% Sunspec OFF

Sunspec OFF


OK Cancel

Определение параметров реакции на превышение частоты

Параметры	Диапазон	Описание
StartPoint	45 – 65 Гц	Значение начальной частоты для реакции на превышение частоты.
StopPoint	45 – 65 Гц	Значение конечной частоты <mark>для</mark> реакции на превышение частоты.
RecoverPoint	45 – 65 Гц	В режиме гистерези <mark>са питание</mark> восстанавливается только тогда, когда оно ниже этой частоты.
RecoverGradient	0,3% – 300 P/min	Скор <mark>ость</mark> восст <mark>ановл</mark> ения мощности (в процентах от активной мощности)
RecoverDelay	0 – 1000%	Задержка восстановления мощности в режиме гистерезиса

Например, StartPoint: 50,5 Γ ц, StopPoint: 51,5 Γ ц, RecoverPoint: 50,1 Γ ц, когда частота сети превышает значение StartPoint: 50,5 Γ ц, инвертор будет линейно уменьшать выходную мощность с градиентом 100 % Pmax/ Γ ц, пока не достигнет значения StopPoint. : 51,5 Γ ц.

OverFrequenceDer	
StartPoint	50.50Hz
StopPoint	51.50Hz
RecoverPoint	50.1Hz
RecoverGradient	1.00%
RecoverDelay	OS
Back	

Режим Frq-Watt для условий повышенной частоты

она не будет ниже, чем RecoverPoint

Когда частота превышает StopP oint: 51,5 Гц, выход инвертора должен остановиться (т.е. 0 Вт). Когда частота ниже чем StopP oint: 51,5 Гц, инвертор будет линейно увеличивать выходну пока не достигнет St artPoint: 50,5 Гц инвертор не селичивать выходну ную мощность, пока частота ниже, чем StopPoint: 51,5 Гц, инвертор не селичивать выходную мощность, пока

MENU»	Setup»	Run Param		
ActiveP	31%	SelfCheck	20S	
QMode	QU	Island	OFF	
ReactP	0.0%	Meter	ON	
PF	1.000	Limiter	OFF	
Fun_ISO	ON	Feed_In	0%	
Fun_RCI	ON C	MPPT Nu	m 6	
C	K	Cancel		

Инвертор обеспечивает функцию регулирования реактивной мощности.

Нажмите «Reactive Power Regulation Mode» (Режим регулирования реактивной мощности), чтобы выбрать правильный режим регулирования и установить соответствующие параметры.

• "OFF" Mode

Функция регулирования реактивной мощности отключена. PF (Коэффициент мощности) зафиксирован на +1.000.

ReactiveP (%)

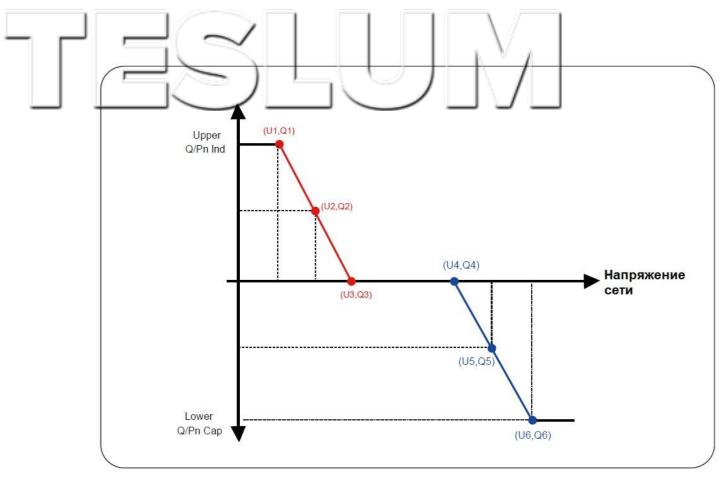
Регулировка выходной реактивной мощности в %.

· "PF" Mode

Коэффициент мощности (PF) фиксирован, а реактивная мощность регулируется параметром PF. PF колеблется от 0,8 опережения до 0,8 отставания.

- Опережающий: инвертор подает реактивную мощность в сеть.
- Отставание: инвертор подает реактивную мощность в сеть.
- "Q(U)" Mode

Выходная реактивная мощность инвертора изменяется в зависимости от напряжения сети.

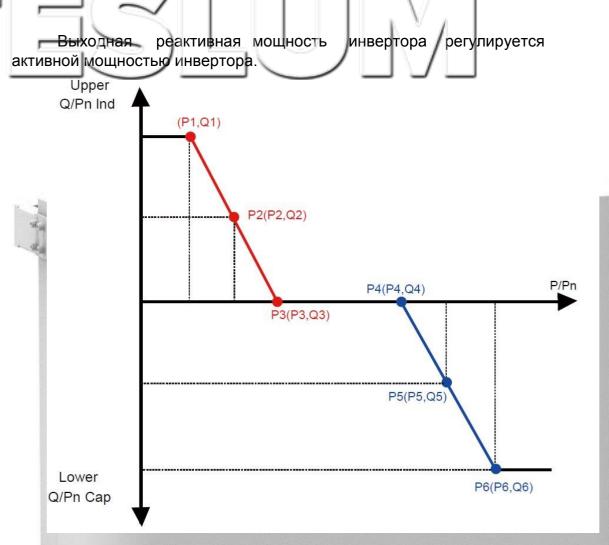

· "Q(P)" Mode

Выходная реактивная мощность инвертора регулируется активной мощностью инвертора.

Меню режима «Q(U)»

8100		
	QU Settii	ng
	Start	30.0%
	Stop	20.0%
	RmpTim	e 2s
	PtUsed	4
	Curve	
	В	ack

QU:	Setting			
V1	80.0%	Q1	-25.0%	
V2	90.0%	Q2	0.0%	
V3	110.0%	Q3	0.0%	
V4	120.0%	Q4	25.0%	
V5	120.0%	Q5	25.0%	
V6	120.0%	Q6	25.0%	
	Back			



Кривая регулирования реактивной мощности на кривой Q(U)

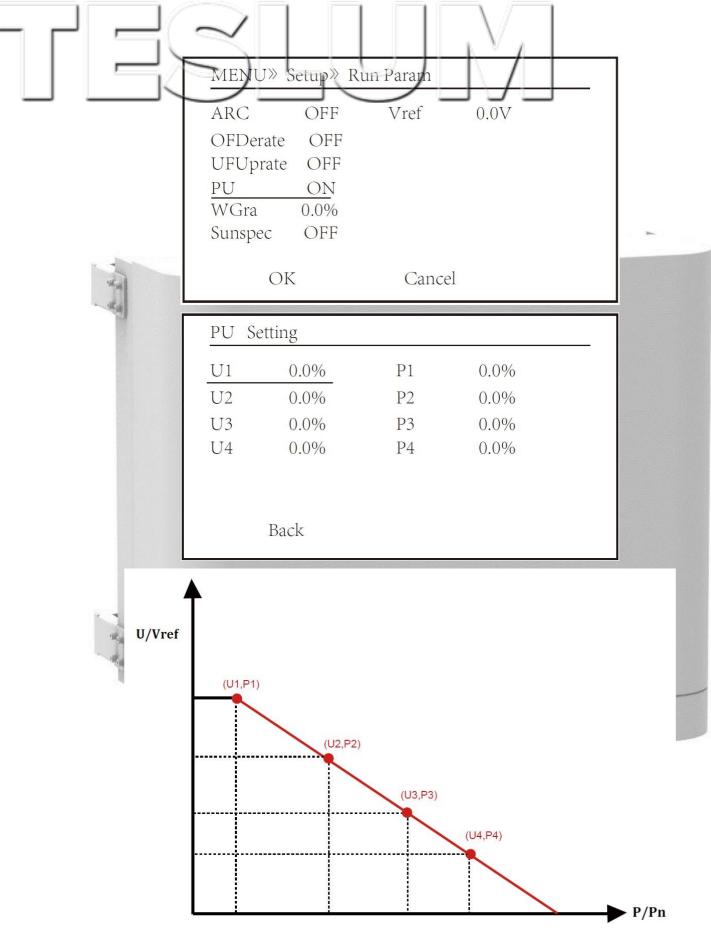
7 = (\sim				
Параметры	Диапазон		Описание		
Start	0%-130% Номинальная мощность	Режим QU запу превышает это	скается, когда актив значение.	ная мощность	
Stop	0%-130% Номинальная мощность		навливается, когда а ыше этого значения.	активная	
RMpTime	0 – 1000c	того, чтобы реа	уменьшите время, но ктивная мощность до ения значения криво	остигла	Я
PtUsed	2 – 6	Номер точки, и	спользуемый в кривс	рй QU	
Curve		QU Кривая			
Q1	-60% -60% Q/Pn	Значение Q/Pn	в точке (U1,Q1) на кр	оивой Q(U)	
V1	0-110% номинального напряжения	Предельное на кривой Q(U)	апряжение сети в т	очке (U1,Q1) н	на
Q2	-60% -60% Q/Pn	Значение Q/Pn	в точке (U2,Q2) на кр	ривой Q(U)	
V2	0-110% номинального напряжения	Предельное на кривой Q(U)	апряжение сети в т	очке (U2,Q2) і	на
Q3	-60% -60% Q/Pn	Значение Q/Pn Q(U)	в точке (U3,Q3) на к	ривой	
V3	0-110% номинального напряжения	Предельное на кривой Q(U)	апряжение сети в т	очке (U3,Q3) і	на
Q4	-60% -60% Q/Pn	Значение Q/Pn	в точке (U4,Q4) на кр	оивой Q(U)	
V4	0-110% номинального напряжения	Предельное на кривой Q(U)	апряжение сети в т	очке (U4,Q4) і	на
Q5	-60% -60% Q/Pn	Значение Q/Pn	в точке (U5,Q5) на кр	оивой Q(U)	
V5	0-110% номинального напряжения	Предельное на кривой Q(U)	апряжение сети в т	очке (U5,Q5) і	на
Q6	-60% -60% Q/Pn	Значение Q/Pn	в точке (U6,Q6) на кр	оивой Q(U)	
V6	0-110% номинального напряжения	Предельное на кривой Q(U)	апряжение сети в т	очке (U6,Q6) і	на

Параметры режима "Q(U)"

Меню "Q(P)" Mode

Кривая регулировани	я реактивной мощности в	режиме Q(P)
---------------------	-------------------------	-------------

MENU»	Setup»	Run Param	
ActiveP	31%	SelfCheck	20S
QMode	QP	Island	OFF
ReactP	0.0%	Meter	ON
PF	1.000	Limiter	OFF
Fun_ISO	ON	Feed_In	0%
Fun_RCI	O ON	MPPT Nur	n 6
0	K	Cancel	

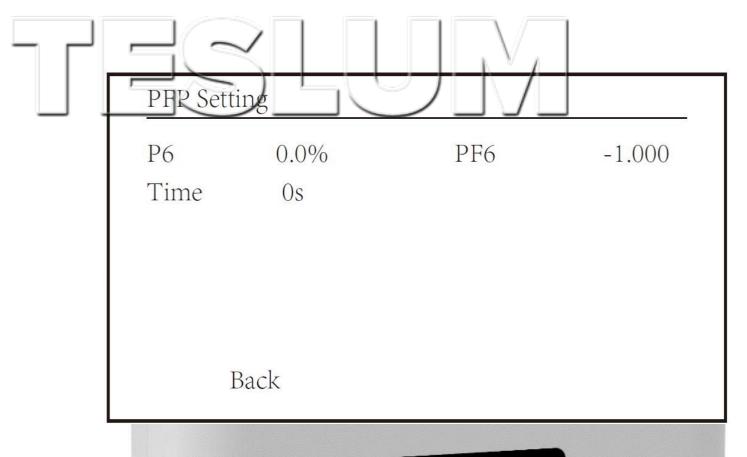

QP	Settling		
P1	80.0%	Q1	-25.0%
P2	90.0%	Q2	0.0%
Р3	110.0%	Q3	0.0%
P4	120.0%	Q4	25.0%
P5	120.0%	Q5	25.0%
P6	120.0%	Q6	25.0%
	Back		

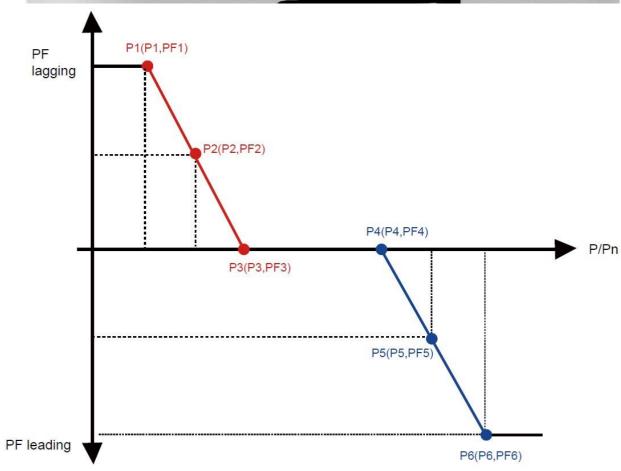
Параметры	Диапазон	Описание	
P1	0%-100% Pn	Значение Q/Pn в точке (P1,Q <mark>1) на крив</mark> ой <mark>Q(P</mark>)	
Q1	-60% -60% Q/Pn	Предельное напряжение сети в точке (P1,Q1) на кривой Q(P)	
P2	0%-100% Pn	Значение Q/Pn в точке (P2,Q2) на кривой Q(P)	
Q2	-60% -60% Q/Pn	Предельное напряжение сети в точк <mark>е (P2,Q2) на</mark> кривой Q(P)	
P3	0%-100% Pn	Значение Q/Pn в точке (P3,Q3) на <mark>кривой Q(</mark> P)	
Q3	-60% -60% Q/Pn	Предельное напряжение сети в точке (Р3, Q3) на кривой Q(Р)	
P4	0%-100% Pn	Значение Q/Pn в точке (P4,Q4) на кривой Q(P)	
Q4	-60% -60% Q/Pn	Предельное напряжение с <mark>ети</mark> в точке (P4,Q4) на кривой Q(P)	
P5	0%-100% Pn	Значение Q/Pn в точке (P5,Q5) на кривой Q(P)	
Q5	-60% -60% Q/Pn	Предельное напряжение сети в точке (P5,Q5) на кривой Q(P)	
P6	0%-100% Pn	Значение Q/Pn в точке (P6,Q6) на кривой Q(P)	
Q6	-60% -60% Q/Pn	Предельное напряжение сети в точке (P6, Q6) на кривой Q(P)	

Параметры режима "Q(P)"

Меню режима «PU»

Выходная реактивная мощность инвертора изменяется в зависимости от напряжения сети.




Кривая регулирования активной мощности в PU

	\sim	
Параметры	Диапазон	Опусание
P1	0%-110% Pn	Значение P/Pn в точке (P1,U1) в режиме PU кривой
U1	0% -150% Vref	Ограничение напряжения сети в точке (P1,U1) на кривой режима PU
P2	0%-110% Pn	Значение P/Pn в точке (P2,U2) на режиме PU кривой
U2	0% -150% Vref	Ограничение напряжения сети в точке (P2,U2) на кривой режима PU
P3	0%-110% Pn	Значение P/Pn в точке (P3,U3) в режиме PU кривой
U3	0% -150% Vref	Ограничение напряжения сети в точке (P3,U3) на кривой режима PU
P4	0%-11 <mark>0%</mark> Pn	Значение P/Pn в точке (P4,U4) в режиме PU кривой
U4	0% -150% Vref	Ограничение напряжения се <mark>ти в точке</mark> (Р4,U4) на кривой режима PU

Меню режима «PF(P)»

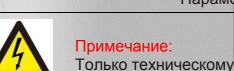
PFP Setti	ng		
Vstart	0.0%	Vstop	0.0%
P1	0.0%	PF1	-1.000
P2	0.0%	PF2	-1.000
Р3	0.0%	PF3	-1.000
P4	0.0%	PF4	-1.000
P5	0.0%	PF5	-1.000
В	ack		

Кривая регулирования коэффициента мощности в режиме PF(P)

	\sim	
Параметры	Диалазон	Описание
VStart	0%-150%Vref	Режим РГР включается, когда напряжение сети больше, чем Vstart.
VStop	0%-150%Vref	Режим PFP отключается, когда напряжение сети меньше Vstop.
P1	0 – 110% Pn	Значение мощности в точке (PF1,P1) на кривой PF(P)
PF1	0,8 опережает - 0,8 отстает	Значение PF в точке (PF1,P1) на кривой PF(P)
P2	0 – 110% Pn	Значение мощности в точке (PF2,P2) на кривой PF(P)
PF2	0,8 <mark>опережает</mark> - 0,8 отстает	Значение РF в точке (PF2,P2) на кривой PF(P)
P3	0 – 110% Pn	Значение мощности в точке (PF3,P3) на кривой PF(P)
PF3	0,8 опережает - 0,8 отстает	Значение PF в точке (PF3,P3) на кривой PF(P)
P4	0 – 110% Pn	Значение мощности в точке (PF4,P4) на кривой PF(P)
PF4	0,8 <mark>оп</mark> ережает - 0,8 отстает	Значение PF в точке (PF4,P4) на к <mark>ривой PF(P</mark>)
P5	0 – 110% Pn	Значение мощности в точке (PF5,P5) на кривой PF(P)
PF5	0,8 опережает - 0,8 отстает	Значение PF в точке (PF5,P5) на кр <mark>ив</mark> ой PF(P)
P6	0 – 110% Pn	Значение мощности в точке (PF6,P6) на кривой PF(P)
PF6	0,8 опережает - 0,8 отстает	Значение PF в точке (PF6,P6) на кривой PF(P)
RMpTime	0 - 1000c	Время кривой РРГ в секундах (вр <mark>емя</mark> достижения изменения 95%).

Параметры режима "PF(P)"

8.5.3 Параметры Защиты


MENU» Setup» Protect Param

- O INMETRO
- O UTE_C15
- O EN50549
- O RD_1699
- **O** EN50438
- O CEI_0_21
- O IEC61727
- **O** G98_G99

- CUSTOM « AS4777
- **O** VED_4105
- O NBT32004

Cancel

OK

CUSTOM

AC OverVoltage 1: 270.0V 《

Tripping Time 1: 100ms

AC OverVoltage 2: 300.0V

Tripping Time 2: 100ms

AC OverVoltage 3: 300.0V

Tripping Time 3: 100ms

CUSTOM

AC LowVoltage 1: 176.0V «

Tripping Time 1: 100ms

AC LowVoltage 2: 176.0V

Tripping Time 2: 100ms

AC LowVoltage 3: 176.0V

Tripping Time 3: 100ms

CUSTOM

AC OverFreq 1: 52.00Hz «

Tripping Time 1: 2000ms

AC OverFreq 2: 53.00Hz

Tripping Time 2: 500ms

AC OverFreq 3: 54.00Hz

Tripping Time 3: 200ms

CUSTOM

AC LowFreq 1: 48.00Hz «

Tripping Time 1: 2000ms

AC LowFreq 2: 47.00Hz

Tripping Time 2: 500ms

AC LowFreq 3: 46.00Hz

Tripping Time 3: 200ms

Rated Voltage 220/380V «

OK

Cancel

MENU» Setup» Protect Param

- O INMETRO
- **O** EN50549
- **O** EN50438
- O IEC61727
- O CUSTOM
- O VED_4105

OK

- O UTE_C15
- **O** RD_1699
- O CEI_0_21
- **O** G98_G99
- **●** AS4777 《
- **O** NBT32004

Cancel

MENU» Setup» Protect Param

- O AS4777.2 Australia A
- O AS4777.2 Australia B
- O AS4777.2 Australia C
- O AS4777.2 New Zealand

8.5.4 Настройки коммуникационного порта (Comm. Param. Set)

MENU» Setup» Comm.Param

Address : 01 «

Meter : Unkonw

BaudRate: 9600

9. Ремонт и обслуживание

Инверторы не требует регулярного обслуживания. Однако мусор или пыль повлияют на тепловые характеристики радиатора. Чистить лучше мягкой щеткой. Если поверхность слишком грязная и влияет на показания ЖК-дисплея и светодиодной лампы, вы можете использовать влажную ткань, чтобы очистить ее.

Внимание:

Когда устройство работает, температура внутри может достигать высоких значений, и прикосновение может вызвать ожоги. Выключите инвертор и подождите, пока он остынет, после чего вы сможете чистить и обслуживать.

1

Опасность высокой температуры:

Запрещается использовать растворители, абразивные материалы или коррозионно-активные материалы для очистки каких-либо частей инвертора.

10. Информация об ошибках и обработка

Инвертор был разработан в соответствии с международными стандартами по безопасности и электромагнитной совместимости. Перед поставкой заказчику инвертор был подвергнут нескольким испытаниям для обеспечения его оптимальной работы и надежности.

10.1 Коды ошибок

1Если есть какой-либо сбой, на ЖК-экране отобразится аварийное сообщение. В этом случае инвертор может перестать подавать энергию в сеть. Описание аварийных сигналов и соответствующие им аварийные сообщения перечислены в таблице ниже.

Код Ошибки	Описание	Описание
F01	Ошибка обратной полярности входа постоянного тока	Проверьте полярность входа PV.
F02	Неисправность по сопротивлению изоляции на входе DC	Проверьте заземляющий кабель инвертора.
F03	Ошибка постоянного тока утечки	Обратитесь к установщику или в сервисный центр Deye.
F04	Замыкание на землю GFDI	Проверьте выходное соединение солнечной панели
F05	Чтение ошибки памяти	Сбой чтения памяти (EEPROM). Перезапустите инвертор, если неисправность сохраняется, обратитесь к установщику или в сервисный центр Deye.
F06	Запись ошибки в память	Сбой чтения памяти (EEPROM). Перезапустите инвертор, если неисправность сохраняется, обратитесь к установщику или в сервисный центр Deye.

	\sim	
F07	Перегорел предохранитель GFDI	Обратитесь к установщику или в сервисный центр Deye.
F08	Ошибка заземления GFDI	Обратитесь к установщику или в сервисный центр Deye.
F09	IGBT поврежден из-за чрезмерного падения напряжения	Обратитесь к установщику или в сервисный центр Deye.
F10	Неисправность источника питания вспомогательного переключателя	Обратитесь к установщику или в сервисный центр Deye.
F11	Ошибки главного контактора переменного тока	Обратитесь к установщику или в сервисный центр Deye.
F12	Ошибки вспомогательного контактора переменного тока	Обратитесь к установщику или в сервисный центр Deye.
F13	Режим работы изменен/ Режим сети изменен	Потеряна одна фаза или цепь датчика переменного напряжения, или реле не замкнуты (прошлая модель инвертора не имеет функции обнаружения неисправности реле). Обратитесь к установщику или в сервисный центр Deye.
F14	Ошибка ПО постоянного тока	Обратитесь к установщику или в сервисный центр Deye.
F15		Неисправен внутренний датчик переменного тока или цепь обнаружения на плате управления или соединительный провод отсоединился. Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye.
F16	Ошибка по GFCI(RCD) переменному току утечки	Эта неисправность означает, что средний ток утечки превышает 300 мА. Проверьте, в порядке ли источник питания постоянного тока или солнечные панели, затем проверьте «Тестовые данные» -> значение «diL» около 40; Затем проверьте датчик тока утечки или цепь. Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye.
F17	Трехфазный ток, перегрузка по току	Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye.

	\sim	
F18	Ошибка ло переменном аппаратного обеспечени	Проверьте датчик переменного тока или цепь на плате управления или соединительный провод. Перезапустите инвертор. Если ошибка

		UO VOTROLIQUIO, OFROTUTOS: "
		не устранена, обратитесь к
		установщику или в сервисный центр
		Deye
		Перезапустите инвертор. Если ошибка
F19	Отказ всего оборудования	не устранена, обратитесь к
1 10	o mae beere deepydebamm	установщику или в сервисный центр
		Deye
		1. Проверьте, находится ли
	Ошибка перегрузки по	выходное напряжение и ток солнечной
F20	постоянному току	сборки в допустимом диапазоне.
	аппаратного обеспечения	2. Проверьте датчик постоянного
		тока и его цепь обнаружения.
	O	Перезапустите инвертор. Если ошибка
F21	Ошибка утечки постоянного	не устранена, обратитесь к
	тока	установщику
		Перезапустите инвертор. Если ошибка
F22	Аварийная остановка (если	не устранена, обратитесь к
1 22	есть кнопка остановки)	установщику
		Эта неисправность означает, что
		средний ток утечки превышает 30 мА.
		Проверьте, в порядке ли источник
		питания постоянного тока или
		солнечные панели, затем проверьте
F23		«Тестовые данные» -> значение «diL»
		около 40; затем проверьте датчик тока
		утечки или цепь. Перезапустите
		инвертор. Если ошибка не устранена,
		обратитесь к установщику или в
		сервисный центр Deye.
		Проверьте сопротивление Vpe на
		основной плате или обнаружение на
		плате управления. Проверьте, что
		фотоэлектрические панели в порядке.
		Чаще всего эта проблема является
	Howernerusser	проблемой PV. Проверьте, хорошо ли
F24	Неисправность	заземлена фотоэлектрическая панель
	сопротивления изоляции	(алюминиевый корпус) и правильно ли
	постоянного тока	заземлен инвертор. Откройте крышку
		инвертора и проверьте, хорошо ли
		закреплен внутренний кабель
		заземления на корпусе. Убедитесь,
		что кабель переменного/постоянного
		тока, клеммная колодка не закорочены
		•

		на землю или не повреждена изоляция.
F25	Ошибка обратной связи по постоянному току	Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye
F26	Шина постоянного тока не сбалансирована	Проверьте, не отсоединен ли кабель кабель питания платы. Перезапустите

		инвертор. Если ошибка не устранена,
		обратитесь к установщику или в
		сервисный центр Deye
		Перезапустите инвертор. Если ошибка
F27	Ошибка изоляции выхода	не устранена, обратитесь к
F21	постоянного тока	установщику или в сервисный центр
		Deye
		Перезапустите инвертор. Если ошибка
F28	Ошибка перенапряжения на	не устранена, обратитесь к
1 20	выходе DC 1	установщику или в сервисный центр
		Deye
	Неисправность	Перезапустите инвертор. Если ошибка
F29	переключателя нагрузки	не устранена, обратитесь к
1 25	переменного тока	установщику или в сервисный центр
	переменного тока	Deye
		1. Проверьте реле и реле
		напряжения.
	Неисправность главного контактора переменного тока	2. Проверьте цепь привода реле. 3.
		Проверьте, не подходит ли
		программное обеспечение для
F30		данного инвертора. (Старый инвертор
		не имеет функции обнаружения реле)
		4. перезапустите преобразователь,
		если неисправность не устранена,
		обратитесь к установщику или в
		сервисную службу Deye.

F31		По крайней мере одно реле не может быть замкнуто. Проверьте реле и его управляющий сигнал. (Прошлая модель инвертора не имеет функции обнаружения реле)
F32	Ошибка перенапряжения на выходе DC 2	Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye
F33	Высокий переменный ток	Проблема с датчиком переменного тока или его цепью. Проверьте, не получиты инвертора.
F34	Переменный ток при перегрузке	инвертор. Если ошибка не устранена, обратитесь к установщику и в сервисный центр
F35	Плавный пуск постоянного тока Нет сети переменного тока	переменного тока. Проверьте цепь определения напряжения переменного тока. Проверьте, в хорошем ли состоянии разъем переменного тока. Проверьте, нормальное ли напряжение в сети переменного тока.
F36	Ошибка фазы сети	Перезапустите инвертор. Если ошибка
	переменного ка	не устранена, обратитесь к установщику или в сервисный центр Deye
F37	Неуравновешенность трехфазного переменного напряжения	Перезапустите инвертов сли ошибка не устранена, обрати с установщику или в сервисный центр Deye
F38	Неуравновешенность трехфазного переменного тока	Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye
F39	Высокий переменный ток (один цикл)	Проверьте датчик переменного тока и его цепь.
F40	Перегрузка по постоянному току	Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye
F41	Линия переменного тока W,U перенапряжения	Проверьте настройку защиты от переменного напряжения. И проверьте, не слишком ли тонкий кабель переменного тока. Проверьте разницу напряжения между ЖКдисплеем и измерителем.

	\sim	
		Проверьте настройку защиты от переменного напряжения. Проверьте
	$\bigg)$	разницу напряжений между
F42		ЖКдисплеем и измерителем. Также
		необходимо проверить, все ли кабели
		переменного тока надежно и
		правильно подключены.
		Проверьте настройку защиты
		напряжения переменного тока. И
E40	Линия переменного тока, В,	проверьте, не слишком ли тонкий
F43	Вт, перенапряжение	кабель переменного тока. Проверьте
		разницу в напряжении между
		ЖКинвертором и счетчиком
		Проверьте настройку защиты от
	Линия переменного тока ₩,Вт низкого напряжения	напряжения переменного тока.
		Проверьте разницу напряжений между
F44		инвертором и счетчиком. Также
		необходимо проверить, все ли кабели
		переменного тока надежно и
		правильно подключены.
		Проверьте настройку защиты от
		напряжения переменного тока.
_	Перенапряжение сети переменного тока U, В	Проверьте разницу напряжений между
F45		инвертором и счетчиком. Также
		необходимо проверить, все ли кабели
		переменного тока надежно и
		правильно подключены.

P		Ţ.			
F46	Линия переменного тока U,B низкого напряжения	Проверьте настройку защиты частоты.			
	'				
F47	Превышение частоты	Проверьте настройку защиты частоты.			
	переменного тока	проворвто наогромму сащить настотьм			
E40	Низкая частота переменного				
F48	тока	Проверьте настройку защиты частоты.			
		Перезапустите инвертор. Если ошибка			
F40	Фазный ток сети U	не устранена, обратитесь к			
F49	перегружен	установщику или в сервисный центр			
		Deye			
		Перезапустите инвертор. Если ошибка			
F50	Фазный ток сети V	не устранена, обратитесь к			
F50	перегружен	установщику или в сервисный центр			
	-1-17	Deye			
		Перезапустите инвертор. Если ошибка			
F51	Фазный ток сети W	не устранена, обратитесь к			
	перегружен	установщику или в сервисный центр			
	11000103/11011	Deve			
		20,0			

	\sim	
F52	Катушка индуктивности переменного тока А, высокий фазный ток	Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye
F53	ндуктивности ого тока В, высокий ок	Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye
F54	Катушка индуктивности переменного тока С, высокий фазный ток	Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye
F55	Напряжение на шине постоянного тока слишком высокое	Проверьте напряжение PV и напряжение Ubus и его цепь обнаружения. Если входное напряжение PV превышает предел, пожалуйста, уменьшите количество солнечных панелей в ряду. Напряжение Ubus смотрите на ЖКдисплее.
F56	Напряжение на шине постоянного тока слишком низкое	Это говорит о том, что входное напряжение PV низкое, и это всегда происходит рано утром. Проверьте напряжение PV и напряжение Ubus. Когда инвертор работает, отображается F56, возможно, потерян драйвер или требуется обновление. Перезапустите инвертор. Если неисправность сохраняется, обратитесь к установщику или в сервисную службу Deye.
F57	Обратный переменный ток	Обратный переменный ток
F58	Перегрузка по фазному току сети U	Перезапустите инвертор. Если ошибка не устранена, обратитесь к

		установщику или в сервисный центр Deye		
Fi59	Перегрузка по фазному току сети √	Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye		
F60	Перегрузка по фазному току сети W	Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye		
F61	Перегрузка по току фазы А	Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye		
F62	Перегрузка по току фазы В	Перезапустите инвертор. Если ошибка не устранена, обратитесь к установщику или в сервисный центр Deye		
F63	Ошибка дуги	Проверьте кабельное соединение фотоэлектрического модуля и устраните неисправность;		
F64	Высокая температура радиатора IGBT	Проверьте датчик температуры. Проверьте, подходит ли прошивка для оборудования. Проверьте, соответствует ли инвертор правильной модели.		

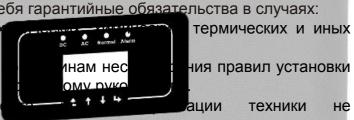
Примечание:

Если ваш инвертор имеет какую-либо информацию об ошибке, показанную в таблице, и если вы перезагрузите устройство, но проблема все еще не решена, пожалуйста, свяжитесь с нашим дистрибьютором и предоставьте следующую информацию:

- 1. Серийный номер инвертора;
- 2. Дистрибьютор/дилер инвертора (при наличии);
- 3. Дата установки;
- 4.Описание проблемы (включая код ошибки ЖК-дисплея и светодиодный индикатор status);
- 5. Ваши контактные данные.

11. Технические характеристики

Модель	SUN- 30K-G03	SUN- 33K-G03	SUN- 35K-G03	SUN- 40K-G03	SUN- 50K-G03	SUN- 60K-G03
Вход инвертора	a					
Максимальная мощность DC (Вт)	39000	42900	45500	52000	65000	78000
Максимальное входное напряжение DC (B)	1000					
Входное напряжение запуска DC (B)			25	50		


	~			$\sqrt{}$		
Рабочий диапазон МРРТ (B)			200 -	850		
Максимальный входной ток DC (A)	40+40	40+40+40	40+40+40	40+40+40	40+40+40 +40	40+40+ 40+40
Максимум. Ток короткого замыкания (A)	60 + 60	60+60+60	60+60+60	60+60+60	60+60+60 +60	60+60+ 60+60
Количество МРРТ/стрингов на МРРТ	2/3+3	3/3+3+3		3/3+3+3	4/3+3+3+ 3	4/3+3+3+ 3
МАКС. ток обратного питания инвертора (A)			()		
Выход инверто	pa					
Номинальная выходная мощность (Вт)	30000	33000	35000	40000	50000	60000
Максимальная активная мощность (Вт)	33000	36300	38500	44000	55000	66000
Номинальное переменное напряжение сети (В)	3L/N/PE 230/400B 220/380B					
Диапазон переменного напряжения сети (В)	0,85Un-1,1Un (может варьироваться в зависимости от сетевых стандартов)					
Номинальная частота сети (Гц)	50/60					
Рабочая фаза			Три с	разы		
Номинальный выходной переменный ток	45.5/43.5	50/47.8	53/50.7	60.6/58	75.8/72.5	90.9/87.0
сети (А)						
Максимальный выходной ток (A)	50/47.9	55/52.6	58.3/55.8	66.7/63.8	83.3/79.7	100/95.7
Максимальный выходной ток короткого замыкания (переменный ток, А, пик)	83.0	91.2	96.8	110.7	138.4	154.0

Максимальная	2			\backslash		
выходная защита от	ノニ			$\square \backslash \square$		
перегрузки по току (АС, пиковое значение)	92.3	101.4	107.5	123.0	153.8	171
Выходной коэффициент мощности	0,8 опережения ~ 0,8 отставания					
Общий коэффициент гармоник тока сети			<3	3%		
Постоянный ток инжекции (мА) Диапазон частот			<0.	5%		
сети						
Эффективность						
Макс.Эффектив ность		9	8.6%		98	3.7%
Евро Эффективность	98%					
Эффективность МРРТ	>99%					
Общие данные						
Размер (мм, Ш×В×Г)			647.5x53	37x303.5		
Вес (кг)	44.5					
Топология			Бестрансфо	рматорный		
Внутреннее потребление			<1 Вт (ночью)		
Рабочая Температура	-25 ~ 65 °C,> 45 °C снижение номинальных характеристик					
Пылевлагозащи та	IP65					
Уровень шума (типичный)	≤ 50 дБ(А)					
Концепция охлаждения	Умное охлаждение					
Максимум. рабочая высота	2000м					
Расчетный срок	>20 лет					
службы						
Стандарт подключения к сети				5,NRS 097,IE 26-1-1,RD 1		

Эксплуатация окружающей влажности	0~100%
Безопасность ЭМС / стандарт	IEC62109-1/-2, NBT32004-2018, EN61000-6-1, EN61000-6-2, EN61000-6-3, EN61000-6-4
Общие данные	
Подключение постоянного тока	МС-4 сопрягаемый
Подключение переменного тока	вилка со степенью защиты IP65
Дисплей	LCD1602
Интерфейс	RS485/RS232/Wifi/LAN

Гарантийные обязательства:

- Срок гарантии на инверторы/зарядные устройства исчисляется со дня выдачи товара Покупателю и составляет 12 месяцев.
- В случае если вышеупомянутое оборудование выйдет из строя не по вине Покупателя, в течение гарантийного срока, поставщик обязуется произвести ремонт или замену дефектного оборудование без дополнительной оплаты.
- Продавец 3. не предоставляет гарантии совместимость приобретаемого товара и товара имеющегося у Покупателя, либо приобретаемого им у третьих лиц.
- Гарантийный ремонт и обслуживание производятся в сервисном центре продавца товара, только при предъявлении настоящего гарантийного талона. Гарантийный срок продлевается на время проведения ремонта.
 - Поставщик снимает с себя гарантийные обязательства в случаях: 5.
 - при наличии меж повреждениях оборудования.
 - выхода из строя и эксплуатации оборудования
 - вскрытия, рем уполномоченными лицами.

- 6. Гарантия не распространяется на расходные материалы и другие узлы, имеющие естественный ограниченный период эксплуатации.
- При обращении с претензиями по поводу работы приобретенной техники, вызванными некомпетентностью покупателя, продавец имеет право взимать плату за проведение консультаций.
- Ha гарантийного период ремонта аналогичное исправное оборудование не выдается.
- Недополучан пением справности прибыль и другие косвенные расходы не подлежат возмещению.
- Гарантия не распространяется на ущего, причиненный другому 10. оборудованию.
- 11. Все транспортные расходы относятся за счет подлежат возмещению.
- Настоящим подтверждаю, что с образцом товара (в т.ч. с 12. техническими характеристиками, формой, габаритами, размером, расцветкой, условиями подключения и правильной эксплуатации) полностью ознакомлен; что мне предоставлена полная информация о проданном мне товаре и мной приобретен именно тот товар, который я имел намерение приобрести. Товар получен. Механических повреждений не имеет, к внешнему виду и комплектации товара претензий не имею, с гарантийным обязательством ознакомлен и согласен.

Покупатель	(ФИО, подпись):		